相關(guān)習(xí)題
 0  261205  261213  261219  261223  261229  261231  261235  261241  261243  261249  261255  261259  261261  261265  261271  261273  261279  261283  261285  261289  261291  261295  261297  261299  261300  261301  261303  261304  261305  261307  261309  261313  261315  261319  261321  261325  261331  261333  261339  261343  261345  261349  261355  261361  261363  261369  261373  261375  261381  261385  261391  261399  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時(shí),對任意,存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某企業(yè)2018年招聘員工,其中,,,五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:

崗位

男性

應(yīng)聘人數(shù)

男性

錄用人數(shù)

男性

錄用比例

女性

應(yīng)聘人數(shù)

女性

錄用人數(shù)

女性

錄用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

總計(jì)

533

264

467

169

(1)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;

(2)從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;

(3)表中,,各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論)

查看答案和解析>>

科目: 來源: 題型:

【題目】為回饋顧客,新華都購物商場擬通過摸球兌獎(jiǎng)的方式對500位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球(球的大小、形狀一模一樣),球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為40元,其余3個(gè)所標(biāo)的面值均為20元,求顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

(2)商場對獎(jiǎng)勵(lì)總額的預(yù)算是30000元,并規(guī)定袋中的4個(gè)球由標(biāo)有面值為20元和40元的兩種球共同組成,或標(biāo)有面值為15元和45元的兩種球共同組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對均衡.請對袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

提示:袋中的4個(gè)球由標(biāo)有面值為a元和b元的兩種球共同組成,即袋中的4個(gè)球所標(biāo)的面值既有a元又有b

查看答案和解析>>

科目: 來源: 題型:

【題目】《福建省高考改革試點(diǎn)方案》規(guī)定:從2018年秋季高中入學(xué)的新生開始,不分文理科;2021年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成,將每門選考科目的考生原始成績從高到低劃分為AB+、BC+、C、D+D、E8個(gè)等級,參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%18%、22%、22%、18%7%、3%,選考科目成績計(jì)入考生總成績時(shí),將AE等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100][8190]、[71.80]、[6170]、[51,60][41,50][31,40][21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級成績,某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六門選考科目進(jìn)行測試,其中化學(xué)考試原始成績 基本服從正態(tài)分布

(1)求化學(xué)原始成績在區(qū)間(57,96)的人數(shù);

(2)以各等級人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級成績在區(qū)間[71,90]的人數(shù),求事件的概率

(附:若隨機(jī)變量,,

查看答案和解析>>

科目: 來源: 題型:

【題目】甲和乙玩一個(gè)猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫有1﹣六個(gè)數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機(jī)抽取一張,然后根據(jù)自己手中的數(shù)推測誰手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說:我不知道誰手中的數(shù)更大;乙聽了甲的判斷后,思索了一下說:我知道誰手中的數(shù)更大了.假設(shè)甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構(gòu)成的集合是_____

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)、、表示不同的直線,、表示不同的平面,給出下列個(gè)命題:其中命題正確的個(gè)數(shù)是(

①若,且,則

②若,且,則;

③若,,,則;

,,,且,則.

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了研究經(jīng)常使用手機(jī)是否對數(shù)學(xué)學(xué)習(xí)成績有影響,某校高二數(shù)學(xué)研究性學(xué)習(xí)小組進(jìn)行了調(diào)查,隨機(jī)抽取高二年級50名學(xué)生的一次數(shù)學(xué)單元測試成績,并制成下面的2×2列聯(lián)表:

及格

不及格

合計(jì)

很少使用手機(jī)

20

5

25

經(jīng)常使用手機(jī)

10

15

25

合計(jì)

30

20

50

則有(  )的把握認(rèn)為經(jīng)常使用手機(jī)對數(shù)學(xué)學(xué)習(xí)成績有影響.

參考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.97.5%B.99%C.99.5%D.99.9%

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面;

2若直線與平面所成的角為求二面角

的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】第一次大考后,某校對甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計(jì)成績后,得到如下列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部人中隨機(jī)抽取人為優(yōu)秀的概率為.

I)請完成列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

乙班

合計(jì)

()根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為成績與班級有關(guān)系?

參考公式和臨界值表:

,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法:①對于獨(dú)立性檢驗(yàn),的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢,其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案