科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓經過點,離心率為. 已知過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)試問軸上是否存在定點,使得為定值.若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,橢圓的方程為(為參數);以原點為極點,以軸正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求橢圓的極坐標方程,及圓的直角坐標方程;
(2)若動點在橢圓上,動點在圓上,求的最大值;
(3)若射線分別與橢圓交于點,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線過點,傾斜角為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出直線的參數方程和曲線的直角坐標方程;
(2)若,設直線與曲線交于兩點,求
(3)在(2)條件下,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著人們經濟收入的不斷增長,個人購買家庭轎車已不再是一種時尚車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關心的問題某汽車銷售公司作了一次抽樣調查,并統計得出某款車的使用年限與所支出的總費用(萬元)有如表的數據資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在給出的坐標系中作出散點圖;
(2)求線性回歸方程中的、;
(3)估計使用年限為年時,車的使用總費用是多少?
(最小二乘法求線性回歸方程系數公式, .)
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為
(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;
(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數列的公差大于0,且,是方程的兩根,數列的前項和為,且.
(1)求數列、的通項公式;
(2)設數列的前項和為,試比較與的大小,并用數學歸納法給予證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為 ,過點且斜率為的直線交曲線于兩點,交圓于兩點(兩點相鄰).
(Ⅰ)若,當時,求的取值范圍;
(Ⅱ)過兩點分別作曲線的切線,兩切線交于點,求與面積之積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著移動互聯網的快速發(fā)展,基于互聯網的共享單車應運而生.某市場研究人員為了了解共享單車運營公司的經營狀況,對該公司最近六個月內的市場占有率進行了統計,并繪制了相應的折線圖.
(Ⅰ)由折線圖得,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關系.求關于的線性回歸方程,并預測公司2017年5月份(即時)的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車.現有采購成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致車輛報廢年限各不形同,考慮到公司運營的經濟效益,該公司決定先對兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數表見上表.
經測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
(參考公式:回歸直線方程為,其中)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com