科目: 來源: 題型:
【題目】定義在R上的函數(shù)f(x)>0,對任意x,y∈R都有f(x+y)=f(x) f(y)成立,且當(dāng)x>0時(shí),f(x)>1.
(1)求f(0)的值;
(2)求證f(x)在R上是增函數(shù);
(3)若f(k3x)f(3x﹣9x﹣2)<1對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元.現(xiàn)對學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測結(jié)果統(tǒng)計(jì)如下:
根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級的概率.
(Ⅰ)求出甲生產(chǎn)三等品的概率;
(Ⅱ)求出乙生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;
(Ⅲ)若甲、乙一天生產(chǎn)產(chǎn)品分別為30件和40件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目: 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認(rèn)知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認(rèn)知程度高).現(xiàn)從參賽者中抽取了人,按年齡分成5組,第一組: ,第二組: ,第三組: ,第四組: ,第五組: ,得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個(gè)按年齡分的組和5個(gè)按職業(yè)分的組中每組各選派1人參加知識競賽,分別代表相應(yīng)組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業(yè)組中1~5組的成績分別為93,98,94,95,90.
(Ⅰ)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績的平均數(shù)和方差;
(Ⅱ)以上述數(shù)據(jù)為依據(jù),評價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對“一帶一路”的認(rèn)知程度.
查看答案和解析>>
科目: 來源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 .
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠推出品牌為“玉兔”的新產(chǎn)品,生產(chǎn)“玉兔”的固定成本為20000元,每生產(chǎn)一件“玉兔”需要增加投入100元,根據(jù)統(tǒng)計(jì)數(shù)據(jù),總收益P(單位:元)與月產(chǎn)量x(單位:件)滿足(注:總收益=總成本+利潤)
(1)請將利潤y(單位:元)表示成關(guān)于月產(chǎn)量x(單位:件)的函數(shù);
(2)當(dāng)月產(chǎn)量為多少時(shí),利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】對于四個(gè)正數(shù),如果,那么稱是的“下位序?qū)?/span>”,
(1)對于2,3,7,11,試求的“下位序?qū)?/span>”;
(2)設(shè)均為正數(shù),且是的“下位序?qū)?/span>”,試判斷之間的大小關(guān)系;
(3)設(shè)正整數(shù)滿足條件:對集合內(nèi)的每個(gè),總存在,使得是的“下位序?qū)?/span>”,且是的“下位序?qū)?/span>”,求正整數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com