科目: 來(lái)源: 題型:
【題目】某校從高一年級(jí)的一次月考成績(jī)中隨機(jī)抽取了 50名學(xué)生的成績(jī)(滿分100分,且抽取的學(xué)生成績(jī)都在內(nèi)),按成績(jī)分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)用分層抽樣的方法從月考成績(jī)?cè)?/span>內(nèi)的學(xué)生中抽取6人,求分別抽取月考成績(jī)?cè)?/span>和內(nèi)的學(xué)生多少人;
(2)在(1)的前提下,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)查,求月考成績(jī)?cè)?/span>內(nèi)至少有1名學(xué)生被抽到的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了80個(gè)面包,以x(單位:個(gè),)表示面包的需求量,T(單位:元)表示利潤(rùn).
(1)求食堂面包需求量的平均數(shù);
(2)求T關(guān)于x的函數(shù)解析式;
(3)根據(jù)直方圖估計(jì)利潤(rùn)T不少于100元的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某教育部門為了了解某地區(qū)高中學(xué)生每周的課外羽毛球訓(xùn)練的情況,隨機(jī)抽取了該地區(qū)50名學(xué)生進(jìn)行調(diào)查,其中男生25人.將每周課外訓(xùn)練時(shí)間不低于8小時(shí)的學(xué)生稱為“訓(xùn)練迷”,低于8小時(shí)的學(xué)生稱為“非訓(xùn)練迷”.已知“訓(xùn)練迷”中有15名男生.根據(jù)調(diào)查結(jié)果繪制的學(xué)生每周課外訓(xùn)練時(shí)間的頻率分布直方圖(時(shí)間單位為小時(shí))如圖所示.
(1)根據(jù)圖中數(shù)據(jù)估計(jì)該地區(qū)高中學(xué)生每周課外訓(xùn)練的平均時(shí)間(說(shuō)明:同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為“訓(xùn)練迷”與性別有關(guān)?
非訓(xùn)練迷 | 訓(xùn)練迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(3)將每周課外訓(xùn)練時(shí)間為4-6小時(shí)的稱為“業(yè)余球迷”,已知調(diào)查樣本中,有3名“業(yè)余球迷”是男生,若從“業(yè)余球迷”中任意選取2人,求至少有1名男生的概率.
附:.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),,(其中為自然對(duì)數(shù)的底數(shù),…).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)若,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量×(萬(wàn)輛) | 50 | 51 | 54 | 57 | 58 |
PM2.5的濃度(微克/立方米) | 60 | 70 | 74 | 78 | 79 |
(1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)若周六同一時(shí)間段的車流量是25萬(wàn)輛,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)此時(shí)PM2.5的濃度為多少(保留整數(shù))?
參考公式:由最小二乘法所得回歸直線的方程是:,其中,
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)橢圓C: 的一個(gè)頂點(diǎn)與拋物線: 的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說(shuō)明理由;
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】甲、乙兩名籃球運(yùn)動(dòng)員,甲投籃一次命中的概率為,乙投籃一次命中的概率為,若甲、乙各投籃三次,設(shè)為甲、乙投籃命中的次數(shù)的差的絕對(duì)值,其中甲、乙兩人投籃是否命中相互沒(méi)有影響.
(1)若甲、乙第一次投籃都命中,求甲獲勝(甲投籃命中數(shù)比乙多)的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校醫(yī)務(wù)室欲研究晝夜溫差大小與高三患感冒人數(shù)多少之間的關(guān)系,他們統(tǒng)計(jì)了2019年9月至2020年1月每月8號(hào)的晝夜溫差情況與高三因患感冒而就診的人數(shù),得到如下資料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
晝夜溫差 | 5 | 8 | 12 | 13 | 16 |
就診人數(shù) | 10 | 16 | 26 | 30 | 35 |
該醫(yī)務(wù)室確定的研究方案是先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2019年9月8日與2020年1月8日的2組數(shù)據(jù).
(1)求就診人數(shù)關(guān)于晝夜溫差的線性回歸方程 (結(jié)果精確到0.01)
(2)若由(1)中所求的線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)3人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該醫(yī)務(wù)室所得線性回歸方程是否理想?
參考公式:,.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校寒假行政值班安排,要求每天安排一名行政人員值日,現(xiàn)從包含甲、乙兩人的七名行政人員中選四人負(fù)責(zé)四天的輪班值日,在下列條件下,各有多少種不同的安排方法?
(1)甲、乙兩人都被選中,且安排在前兩天值日;
(2)甲、乙兩人只有一人被選中,且不能安排在后兩天值日.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com