【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車流量×(萬輛)

50

51

54

57

58

PM2.5的濃度(微克/立方米)

60

70

74

78

79

1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)若周六同一時(shí)間段的車流量是25萬輛,試根據(jù)(1)求出的線性回歸方程,預(yù)測此時(shí)PM2.5的濃度為多少(保留整數(shù))?

參考公式:由最小二乘法所得回歸直線的方程是:,其中,

【答案】1;(237

【解析】

1)根據(jù)題中所給公式分別求出相關(guān)數(shù)據(jù)即可得解;

2)將代入(1)所得直線方程即可得解.

1

y關(guān)于x的線性回歸方程是:

2)當(dāng)時(shí),

所以可以預(yù)測此時(shí)PM2.5的濃度約為37.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是古希臘數(shù)學(xué)家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點(diǎn)與的中點(diǎn)重合,斜邊在直線上.已知的中點(diǎn),現(xiàn)將該圖形繞直線旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線和圓.有以下幾個(gè)結(jié)論:

①直線的傾斜角不是鈍角;

②直線必過第一、三、四象限;

③直線能將圓分割成弧長的比值為的兩段圓;

④直線與圓相交的最大弦長為;

其中正確的是______________.(寫出所有正確說法的番號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的最大距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知圓,直線.試證:當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),直線與圓恒相交,并求直線被圓所截得弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校寒假行政值班安排,要求每天安排一名行政人員值日,現(xiàn)從包含甲、乙兩人的七名行政人員中選四人負(fù)責(zé)四天的輪班值日,在下列條件下,各有多少種不同的安排方法?

1)甲、乙兩人都被選中,且安排在前兩天值日;

2)甲、乙兩人只有一人被選中,且不能安排在后兩天值日.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的實(shí)軸長為4,焦距為

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)直線l經(jīng)過點(diǎn)且與橢圓C交于不同的兩點(diǎn)M,N(異于橢圓的左頂點(diǎn)),設(shè)點(diǎn)Qx軸上的一個(gè)動(dòng)點(diǎn).直線QM,QN的斜率分別為,,試問:是否存在點(diǎn)Q,使得為定值?若存在.求出點(diǎn)Q的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的三棱臺(tái)中,分別為的中點(diǎn),,

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

美國華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場造成產(chǎn)品銷售越來越難,為此某廠家舉行大型的促銷活動(dòng),經(jīng)測算該產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足,已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),每件產(chǎn)品的銷售價(jià)格定為.

)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù)(利潤=總售價(jià)-成本-促銷費(fèi));

)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1)當(dāng)時(shí),求證:;

(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案