相關(guān)習(xí)題
 0  263890  263898  263904  263908  263914  263916  263920  263926  263928  263934  263940  263944  263946  263950  263956  263958  263964  263968  263970  263974  263976  263980  263982  263984  263985  263986  263988  263989  263990  263992  263994  263998  264000  264004  264006  264010  264016  264018  264024  264028  264030  264034  264040  264046  264048  264054  264058  264060  264066  264070  264076  264084  266669 

科目: 來源: 題型:

【題目】已知拋物線,直線.

(1)若直線與拋物線相切,求直線的方程;

(2)設(shè),直線與拋物線交于不同的兩點,,若存在點,滿足,且線段互相平分(為原點),求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】拋物線M:的焦點為F,過焦點F的直線l(x軸不垂直)交拋物線M于點AB,A關(guān)于x軸的對稱點為.

(1)求證:直線過定點,并求出這個定點;

(2)的垂直平分線交拋物線于C,D,四邊形外接圓圓心N的橫坐標(biāo)為19,求直線AB和圓N的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某次招聘分為筆試和面試兩個環(huán)節(jié),且只有筆試過關(guān)者方可進入面試環(huán)節(jié),筆試與面試都過關(guān)才會被錄用.筆試需考完全部三科,且至少有兩科優(yōu)秀才算筆試過關(guān),面試需考完全部兩科且兩科均為優(yōu)秀才算面試過關(guān).假設(shè)某考生筆試三科每科優(yōu)秀的概率均為,面試兩科每科優(yōu)秀的概率均為.

(1)求該考生被錄用的概率;

(2)設(shè)該考生在此次招聘活動中考試的科目總數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】農(nóng)機公司出售收割機,一臺收割機的使用壽命為五年,在農(nóng)機公司購買收割機時可以一次性額外訂購買若干次維修服務(wù),費用為每次100元,每次維修時公司維修人員均上門服務(wù),實際上門服務(wù)時還需支付維修人員的餐飲費50/次;若實際維修次數(shù)少于購買的維修次數(shù),則未提供服務(wù)的訂購費用退還50%;如果維修次數(shù)超過了購買的次數(shù),農(nóng)機公司不再提供服務(wù),收割機的維修只能到私人維修店,每次維修費用為400元,無須支付餐飲費;--位農(nóng)機手在購買收割機時,需決策一次性購買多少次維修服務(wù).
為此,他擬范收集整理出一臺收割機在五年使用期內(nèi)維修次數(shù)及相應(yīng)的頻率如下表:

(1)如果農(nóng)機手在購買收割機時購買了6次維修,在使用期內(nèi)實際維修的次數(shù)為5次,這位農(nóng)機手的花費總費用是多少?如果實際維修的次數(shù)是8次,農(nóng)機手的花費總費用又是多少?

(2)農(nóng)機手購買了一臺收制機,試在購買維修次數(shù)為6次和7次的兩個數(shù)據(jù)中,根據(jù)使用期內(nèi)維修時花費的總費用期望值,幫助農(nóng)機手進行決策.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四棱錐中,四邊形為矩形,,,.

(1)求證:平面

(2)設(shè),求平面與平面所成的二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點M,N.

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若,求實數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在甲地,隨著人們生活水平的不斷提高,進入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習(xí)慣進入電影院看電影的人簡稱為“有習(xí)慣”的人,否則稱為“無習(xí)慣的人”.某電影院在甲地隨機調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習(xí)慣”的人數(shù)如下表:

(1)以年齡45歲為分界點,請根據(jù)100個樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認為“有習(xí)慣”的人與年齡有關(guān);

(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計概率,若每張電影票定價為,則在“有習(xí)慣”的人中約有的人會買票看電影(為常數(shù)).已知票價定為30元的某電影,票房達到了 69.3萬元.某新影片要上映,電影院若將電影票定價為25元,那么該影片票房估計能達到多少萬元?

參考公式:,其中.

參考臨界值

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠共有名工人,已知這名工人去年完成的產(chǎn)品數(shù)都在區(qū)間(單位:萬件)內(nèi),其中每年完成萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成組,第組、第組、第組、第組、第組對應(yīng)的區(qū)間分別為,,,,并繪制出如圖所示的頻率分布直方圖.

(1)求的值,并求去年優(yōu)秀員工人數(shù);

(2)選取合適的抽樣方法從這名工人中抽取容量為的樣本,求這組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中人的樣本中的優(yōu)秀員工中隨機選取名傳授經(jīng)驗,求選取的名工人在同一組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;

若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了了解居民消費情況,某地區(qū)調(diào)查了10000戶小家庭的日常生活平均月消費金額,根據(jù)所得數(shù)據(jù)繪制了樣本頻率分布直方圖,如圖所示,每戶小家庭的平均月消費金額均不超過9千元,其中第六組第七組第八組尚未繪制完成,但是已知這三組的頻率依次成等差數(shù)列,且第六組戶數(shù)比第七組多500戶,

(1)求第六組第七組第八組的戶數(shù),并補畫圖中所缺三組的直方圖;

(2)若定義月消費在3千元以下的小家庭為4類家庭,定義月消費在3千元至6千無的小家庭為B類家庭,定義月消費6千元以上的小家庭為C類家庭,現(xiàn)從這10000戶家庭中按分層抽樣的方法抽取80戶家庭召開座談會,間A,B,C各層抽取的戶數(shù)分別是多少?

查看答案和解析>>

同步練習(xí)冊答案