【題目】農(nóng)機(jī)公司出售收割機(jī),一臺(tái)收割機(jī)的使用壽命為五年,在農(nóng)機(jī)公司購(gòu)買收割機(jī)時(shí)可以一次性額外訂購(gòu)買若干次維修服務(wù),費(fèi)用為每次100元,每次維修時(shí)公司維修人員均上門服務(wù),實(shí)際上門服務(wù)時(shí)還需支付維修人員的餐飲費(fèi)50元/次;若實(shí)際維修次數(shù)少于購(gòu)買的維修次數(shù),則未提供服務(wù)的訂購(gòu)費(fèi)用退還50%;如果維修次數(shù)超過(guò)了購(gòu)買的次數(shù),農(nóng)機(jī)公司不再提供服務(wù),收割機(jī)的維修只能到私人維修店,每次維修費(fèi)用為400元,無(wú)須支付餐飲費(fèi);--位農(nóng)機(jī)手在購(gòu)買收割機(jī)時(shí),需決策一次性購(gòu)買多少次維修服務(wù).
為此,他擬范收集整理出一臺(tái)收割機(jī)在五年使用期內(nèi)維修次數(shù)及相應(yīng)的頻率如下表:
(1)如果農(nóng)機(jī)手在購(gòu)買收割機(jī)時(shí)購(gòu)買了6次維修,在使用期內(nèi)實(shí)際維修的次數(shù)為5次,這位農(nóng)機(jī)手的花費(fèi)總費(fèi)用是多少?如果實(shí)際維修的次數(shù)是8次,農(nóng)機(jī)手的花費(fèi)總費(fèi)用又是多少?
(2)農(nóng)機(jī)手購(gòu)買了一臺(tái)收制機(jī),試在購(gòu)買維修次數(shù)為6次和7次的兩個(gè)數(shù)據(jù)中,根據(jù)使用期內(nèi)維修時(shí)花費(fèi)的總費(fèi)用期望值,幫助農(nóng)機(jī)手進(jìn)行決策.
【答案】(1)800元,1700元;(2)選訂購(gòu)7次維修較劃算
【解析】
(1)根據(jù)已知條件直接求出購(gòu)買6次維修,而實(shí)際維修次數(shù)為5次時(shí)的維修總費(fèi)用,購(gòu)買6次維修,而實(shí)際維修次數(shù)為8次時(shí)的維修總費(fèi)用;(2)先求出購(gòu)買維修次數(shù)為6次和7次的總費(fèi)用期望值,再幫助農(nóng)機(jī)手進(jìn)行決策.
(1)購(gòu)買6次維修,而實(shí)際維修次數(shù)為5次時(shí)的維修總費(fèi)用為:
(元);
購(gòu)買6次維修,而實(shí)際維修次數(shù)為8次時(shí)的維修總費(fèi)用為:
(元).
(2)購(gòu)買6次維修時(shí):
實(shí)際維修次數(shù)為6次時(shí)的維修總費(fèi)用為:(元);
實(shí)際維修次數(shù)為7次時(shí)的維修總費(fèi)用為:(元);
實(shí)際維修次數(shù)為9次時(shí)的維修總費(fèi)用為:(元).
綜合(1)的計(jì)算,訂購(gòu)維修次數(shù)6次時(shí)的維修總費(fèi)用概率分布表:
維修次數(shù) | 5 | 6 | 7 | 8 | 9 |
維修總費(fèi)用 | 800 | 900 | 1300 | 1700 | 2100 |
P | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 |
(元);
若訂購(gòu)維修次數(shù)為7次時(shí),維修總費(fèi)用的概率分布表為:
維修次數(shù) | 5 | 6 | 7 | 8 | 9 |
維修總費(fèi)用 | 850 | 950 | 1050 | 1450 | 1850 |
P | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 |
(元).
因?yàn)?/span>,所以選訂購(gòu)7次維修較劃算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)是檢測(cè)空氣質(zhì)量的重要參數(shù),其數(shù)值越大說(shuō)明空氣污染狀況越嚴(yán)重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計(jì)了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說(shuō)法錯(cuò)誤的是( )
A. 該地區(qū)在該月2日空氣質(zhì)量最好
B. 該地區(qū)在該月24日空氣質(zhì)量最差
C. 該地區(qū)從該月7日到12日持續(xù)增大
D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負(fù)相關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次高中學(xué)科競(jìng)賽中,4000名考生的參賽成績(jī)統(tǒng)計(jì)如圖所示,60分以下視為不及格,若同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表,則下列說(shuō)法中有誤的是( )
A. 成績(jī)?cè)?/span>分的考生人數(shù)最多
B. 不及格的考生人數(shù)為1000人
C. 考生競(jìng)賽成績(jī)的平均分約70.5分
D. 考生競(jìng)賽成績(jī)的中位數(shù)為75分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱錐中,側(cè)棱長(zhǎng)為3,底面邊長(zhǎng)為2,E,F分別為棱AB,CD的中點(diǎn),則下列命題正確的是( )
A.EF與AD所成角的正切值為B.EF與AD所成角的正切值為
C.AB與面ACD所成角的余弦值為D.AB與面ACD所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn),是中點(diǎn),與直線相交于.
(1)當(dāng)與垂直時(shí),求的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)探究是否與直線的傾斜角有關(guān)?若無(wú)關(guān),求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,則關(guān)于函數(shù)以下說(shuō)法正確的是( )
A. 最大值為1,圖象關(guān)于直線對(duì)稱B. 在上單調(diào)遞減,為奇函數(shù)
C. 在上單調(diào)遞增,為偶函數(shù)D. 周期為,圖象關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,是邊長(zhǎng)為2的正三角形,是的中點(diǎn),是的中點(diǎn).
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com