科目: 來源: 題型:
【題目】已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線不經(jīng)過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標原點),求S的最小值并求此時直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 是邊長為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,橢圓的離心率為,過橢圓的左焦點,且斜率為的直線,與以右焦點為圓心,半徑為的圓相切.
(1)求橢圓的標準方程;
(2)線段是橢圓過右焦點的弦,且,求的面積的最大值以及取最大值時實數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓的左、右焦點分別為,,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(1)求橢圓的方程;
(2)過橢圓的右焦點作斜率為1的直線與橢圓交于兩點,試在軸上求一點,使得以,為鄰邊的平行四邊形是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了響應國家號召,某校組織部分學生參與了“垃圾分類,從我做起”的知識問卷作答,并將學生的作答結果分為“合格”與“不合格”兩類與“問卷的結果”有關?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認為“性別”與“問卷的結果”有關?
(2)在成績合格的學生中,利用性別進行分層抽樣,共選取9人進行座談,再從這9人中隨機抽取5人發(fā)送獎品,記拿到獎品的男生人數(shù)為X,求X的分布列及數(shù)學期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題:
①若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;
②在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
③設隨機變量服從正態(tài)分布,若,則;
④對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大.其中正確的命題序號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數(shù)據(jù)的散點圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合與的關系,請計算相關系數(shù)并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);
(2)求關于的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產(chǎn)量的增加量約為多少?
附:相關系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com