科目: 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.直線過點,且與橢圓 交于,兩點,線段的中點為.
(I)求橢圓的方程;
(Ⅱ)點為坐標原點,延長線段與橢圓交于點,四邊形能否為平行四邊形?若能,求出此時直線的方程,若不能,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線不與坐標軸垂直,且與拋物線有且只有一個公共點.
(1)當點的坐標為時,求直線的方程;
(2)設(shè)直線與軸的交點為,過點且與直線垂直的直線交拋物線于,兩點.當時,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,PA,AC∩BD=O
(1)設(shè)平面ABP∩平面DCP=l,證明:l∥AB
(2)若E是PA的中點,求三棱錐P﹣BCE的體積VP﹣BCE.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,AB=2,∠BAD=60°,M是PD的中點.
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當三棱錐C﹣PBD的體積等于 時,求PA的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學有初中學生1800人,高中學生1200人. 為了解學生本學期課外閱讀時間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們課外閱讀時間,然后按“初中學生”和“高中學生”分為兩組,再將每組學生的閱讀時間(單位:小時)分為5組:,,,,,并分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)寫出的值;試估計該校所有學生中,閱讀時間不小于30個小時的學生人數(shù);
(Ⅱ)從閱讀時間不足10個小時的樣本學生中隨機抽取2人,求至少抽到1名高中生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅲ)設(shè),對任意恒有,求實數(shù)的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:相切的直線l交橢圓C于A,B兩點(O為坐標原點),求△AOB面積的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com