科目: 來源: 題型:
【題目】過函數(shù)的圖象上一點作傾斜角互補的兩條直線,分別與交與異于的,兩點.
(1)求證:直線的斜率為定值;
(2)如果,兩點的橫坐標均不大于0,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓的一個焦點為,且橢圓過點,為坐標原點,
(1)求橢圓的標準方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點、,且?若存在,寫出該圓的方程,并求的最大值,若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)
已知=12sin(x+)cosx-3,x∈[o,].
(1)求的最大值、最小值;
(Ⅱ)CD為△ABC的內(nèi)角平分線,已知AC=max,BC=,CD=2,求∠C.
查看答案和解析>>
科目: 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數(shù),y表示這個x個分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程
(2)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
(參考公式:,其中,)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同,圓C的直角坐標方程為,直線l的參數(shù)方程為(t為參數(shù)),射線OM的極坐標方程為.
(1)求圓C和直線l的極坐標方程;
(2)已知射線OM與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】啟東市政府擬在蝶湖建一個旅游觀光項目,設計方案如下:如圖所示的圓O是圓形湖的邊界,沿線段AB,BC,CD,DA建一個觀景長廊,其中A,B,C,D是觀景長廊的四個出入口且都在圓O上,已知:BC=12百米,AB=8百米,在湖中P處和湖邊D處各建一個觀景亭,且它們關于直線AC對稱,在湖面建一條觀景橋APC.觀景亭的大小、觀景長廊、觀景橋的寬度均忽略不計,設.
(1)若觀景長廊AD=4百米,CD=AB,求由觀景長廊所圍成的四邊形ABCD內(nèi)的湖面面積;
(2)當時,求三角形區(qū)域ADC內(nèi)的湖面面積的最大值;
(3)若CD=8百米且規(guī)劃建亭點P在三角形ABC區(qū)域內(nèi)(不包括邊界),試判斷四邊形ABCP內(nèi)湖面面積是否有最大值?若有,求出最大值,并寫出此時的值;若沒有,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校100名學生的數(shù)學測試成績的頻率分布直方圖如圖所示,分數(shù)不低于a即為優(yōu)秀,如果優(yōu)秀的人數(shù)為20,則a的估計值是( )
A. 130 B. 140 C. 133 D. 137
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com