相關習題
 0  264609  264617  264623  264627  264633  264635  264639  264645  264647  264653  264659  264663  264665  264669  264675  264677  264683  264687  264689  264693  264695  264699  264701  264703  264704  264705  264707  264708  264709  264711  264713  264717  264719  264723  264725  264729  264735  264737  264743  264747  264749  264753  264759  264765  264767  264773  264777  264779  264785  264789  264795  264803  266669 

科目: 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且的前n項和為.若對任意的恒成立.

1)求數(shù)列,的通項公式;

2)若數(shù)列滿足問:是否存在正整數(shù),使得,若存在求出的值,若不存在,說明理由;

3)若存在各項均為正整數(shù)公差為的無窮等差數(shù)列,滿足,且存在正整數(shù),使得成等比數(shù)列,求的所有可能的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)(其中是常數(shù),且),曲線處的切線方程為.

1)求的值;

2)若存在(其中是自然對數(shù)的底),使得成立,求的取值范圍;

3)設,若對任意,均存在,使得方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓過點,分別為橢圓的右下頂點,且.

1)求橢圓的方程;

2)設點在橢圓內(nèi),滿足直線,的斜率乘積為,且直線,分別交橢圓于點,.

①若,關于軸對稱,求直線的斜率;

②若的面積分別為,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校在圓心角為直角,半徑為的扇形區(qū)域內(nèi)進行野外生存訓練.如圖所示,在相距兩個位置分別為300,100名學生,在道路上設置集合地點,要求所有學生沿最短路徑到點集合,記所有學生進行的總路程為.

(1)設,寫出關于的函數(shù)表達式;

(2)當最小時,集合地點離點多遠?

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知圓C滿足:圓心在軸上,且與圓相外切.設圓C軸的交點為M,N,若圓心C軸上運動時,在軸正半軸上總存在定點,使得為定值,則點的縱坐標為_________.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的直角坐標方程,并求時直線的普通方程;

2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在橢圓上任取一點不為長軸端點),連結(jié)、,并延長與橢圓分別交于點兩點,已知的周長為8,面積的最大值為.

1)求橢圓的方程;

2)設坐標原點為,當不是橢圓的頂點時,直線和直線的斜率之積是否為定值?若是定值,請求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某小學舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.

(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;

(2)建立y關于x的回歸方程,并據(jù)此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關系數(shù),若r>0.95,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程中斜率與截距的最小二乘估計公式分別為 ,

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的極坐標方程,并求出曲線公共弦所在直線的極坐標方程;

2)若射線與曲線交于兩點,與曲線交于點,且,求的值.

查看答案和解析>>

同步練習冊答案