相關(guān)習題
 0  264902  264910  264916  264920  264926  264928  264932  264938  264940  264946  264952  264956  264958  264962  264968  264970  264976  264980  264982  264986  264988  264992  264994  264996  264997  264998  265000  265001  265002  265004  265006  265010  265012  265016  265018  265022  265028  265030  265036  265040  265042  265046  265052  265058  265060  265066  265070  265072  265078  265082  265088  265096  266669 

科目: 來源: 題型:

【題目】已知橢圓,點、均在橢圓上,,點與點關(guān)于原點對稱,的最大值為

1)求橢圓的標準方程;

2)若,求外接圓的半徑的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019121日起鄭州市施行《鄭州市城市生活垃圾分類管理辦法》,鄭州將正式進入城市生活垃圾分類時代.為了增強社區(qū)居民對垃圾分類知識的了解,積極參與到垃圾分類的行動中,某社區(qū)采用線下和線上相結(jié)合的方式開展了一次200名轄區(qū)成員參加的垃圾分類有關(guān)知識專題培訓.為了了解參訓成員對于線上培訓、線下培訓的滿意程度,社區(qū)居委會隨機選取了40名轄區(qū)成員,將他們分成兩組,每組20人,分別對線上、線下兩種培訓進行滿意度測評,根據(jù)轄區(qū)成員的評分(滿分100分)繪制了如圖所示的莖葉圖.

1)根據(jù)莖葉圖判斷轄區(qū)成員對于線上、線下哪種培訓的滿意度更高,并說明理由.

2)求這40名轄區(qū)成員滿意度評分的中位數(shù),并將評分不超過、超過分別視為基本滿意”“非常滿意兩個等級.

)利用樣本估計總體的思想,估算本次培訓共有多少轄區(qū)成員對線上培訓非常滿意;

)根據(jù)莖葉圖填寫下面的列聯(lián)表.

基本滿意

非常滿意

總計

線上培訓

線下培訓

總計

并根據(jù)列聯(lián)表判斷能否有995%的把握認為轄區(qū)成員對兩種培訓方式的滿意度有差異?

附:

0010

0005

0001

6635

7879

10828

,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,為正三角形,,,,點在線段的中點,點為線段的中點.

1)在線段上是否存在點,使得平面?若存在,指出點的位置;若不存在,請說明理由.

2)求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個月的工資超過4000

C.由此圖可以估計,該銷售人員20206,7,8月的平均工資將會超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)證明:時,

3)若函數(shù)有且只有三個不同的零點,分別記為,設(shè)的最大值是,證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.

(I)求橢圓的方程;

(II)設(shè)與圓相切的直線交橢圓,兩點(為坐標原點),的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐中, 平面 , , , .

1)證明;

2)求二面角的余弦值;

3)設(shè)點為線段上一點,且直線平面所成角的正弦值為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校開展學生社會法治服務項目,共設(shè)置了文明交通,社區(qū)服務,環(huán)保宣傳和中國傳統(tǒng)文化宣講四個項目,現(xiàn)有該校的甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項.

1)求恰有2個項目沒有被這4名學生選擇的概率;

2)求環(huán)保宣傳被這4名學生選擇的人數(shù)的分布列及其數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,QAP的中點.

(1)求點Q的軌跡C2的直角坐標方程;

(2)直線l與直線C2交于AB兩點,若|AB|≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)有兩個極值點.

1)求實數(shù)的范圍;

2)設(shè)函數(shù)的兩個極值點分別為,,且,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案