【題目】某校開展學生社會法治服務項目,共設置了文明交通,社區(qū)服務,環(huán)保宣傳和中國傳統(tǒng)文化宣講四個項目,現(xiàn)有該校的甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項.

1)求恰有2個項目沒有被這4名學生選擇的概率;

2)求環(huán)保宣傳被這4名學生選擇的人數(shù)的分布列及其數(shù)學期望.

【答案】1;(2的分布列如下表:

0

1

2

3

4

的數(shù)學期望為:.

【解析】

1)先計算出基本事件的個數(shù),再計算出恰有2個項目沒有被這4名學生選擇的基本事件的個數(shù),最后利用古典概型的計算公式進行求解即可;

2)根據(jù)題意可知:的可能取值為0,1,23,4,分別求出相應的概率,最后列出分布列計算數(shù)學期望即可.

1)甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項,則基本事件的個數(shù)為:

2個項目沒有被這4名學生選擇所含的基本事件的個數(shù)為:

,因此恰有2個項目沒有被這4名學生選擇的概率為:

2)根據(jù)題意可知:的可能取值為0,1,2,3,4,

;;

;

所以環(huán)保宣傳被這4名學生選擇的人數(shù)的分布列如下表:

0

1

2

3

4

所以的數(shù)學期望為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在黨中央的正確領導下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個地區(qū)采取防護措施后,統(tǒng)計了從27日到213日一周的新增“新冠肺炎”確診人數(shù),繪制成如圖折線圖:

1)根據(jù)圖中甲、乙兩個地區(qū)折線圖的信息,寫出你認為最重要的兩個統(tǒng)計結論;

2)新冠病毒在進入人體后有一段時間的潛伏期,此期間為病毒傳播的最佳時期,我們把與病毒感染者有過密切接觸的人群稱為密切接觸者,假設每位密切接觸者不再接觸其他病毒感染者,10天內所有人不知情且生活照常.

i)在不加任何防護措施的前提下,假設每位密切接觸者被感染的概率均為.第一天,若某位感染者產(chǎn)生名密切接觸者則第二天新增感染者平均人數(shù)為ap;第二天,若每位感染者都產(chǎn)生a名密切接觸者,則第三天新增感染者平均人數(shù)為;以此類推,記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.寫出,;

ii)在(i)的條件下,若所有人都配戴口罩后,假設每位密切接觸者被感染的概率均為,且滿足關系,此時,記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為.當最大,且時,根據(jù)的值說明戴口罩的必要性.(精確到

參考公式:函數(shù)的導函數(shù);

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的焦點為,(其中)是上的一點,且.

(1)求拋物線的方程;

(2)已知為拋物線上除頂點之外的任意一點,在點處的切線與軸交于點,過點的直線交拋物線于兩點,設,,的斜率分別為,,求證:,,成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論函數(shù)的單調性.

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,,的中點.

(1)求證:

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,為正三角形,,,,點在線段的中點,點為線段的中點.

1)在線段上是否存在點,使得平面?若存在,指出點的位置;若不存在,請說明理由.

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從中國教育在線官方公布的考研動機調查來看,本科生扎堆考研的原因大概集中在這6個方面:本科就業(yè)壓力大,提升競爭力;通過考研選擇真正感興趣的專業(yè);為了獲得學歷;繼續(xù)深造;隨大流;有名校情結.如圖是2015~2019年全國碩士研究生報考人數(shù)趨勢圖(單位:萬人)的折線圖.

1)求關于的線性回歸方程;

2)根據(jù)(1)中的回歸方程,預測2021年全國碩士研究生報考人數(shù).

參考數(shù)據(jù):.

回歸方程中斜率和截距的最小二乘估計公式分別:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為,若曲線與曲線關于直線對稱.

1)求曲線的直角坐標方程;

2)在以為極點,軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,A1B1A1C1,DB1C1的中點,A1AA1B12.

1)求證:AB1∥平面A1CD;

2)若異面直線AB1BC所成角為60°,求四棱錐A1CDB1B的體積.

查看答案和解析>>

同步練習冊答案