相關(guān)習題
 0  28157  28165  28171  28175  28181  28183  28187  28193  28195  28201  28207  28211  28213  28217  28223  28225  28231  28235  28237  28241  28243  28247  28249  28251  28252  28253  28255  28256  28257  28259  28261  28265  28267  28271  28273  28277  28283  28285  28291  28295  28297  28301  28307  28313  28315  28321  28325  28327  28333  28337  28343  28351  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=ax+
bx
+c(a>0)的圖象在點(1,f(1))處的切線方程為y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
2
,
3(1+an+1)
1-an
=
2(1+an)
1-an+1
,anan+1<0(n≥1),數(shù)列{bn}滿足:bn=an+12-an2(n≥1).
(Ⅰ)求數(shù)列{an},{bn}的通項公式
(Ⅱ)證明:數(shù)列{bn}中的任意三項不可能成等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k3x+5
(0≤x≤10)
,若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求k的值及f(x)的表達式.
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=cos(
π
3
+x)cos(
π
3
-x),g(x)=
1
2
sin2x-
1
4

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)設(shè)a>0,b>0,稱
2aba+b
為a,b的調(diào)和平均數(shù).如圖,C為線段AB上的點,且AC=a,CB=b,O為AB中點,以AB為直徑做半圓.過點C作AB的垂線交半圓于D.連接OD,AD,BD.過點C作OD的垂線,垂足為E.則圖中線段OD的長度是a,b的算術(shù)平均數(shù),線段
 
的長度是a,b的幾何平均數(shù),線段
 
的長度是a,b的調(diào)和平均數(shù).

查看答案和解析>>

科目: 來源: 題型:

14、某射手射擊所得環(huán)數(shù)ξ的分布列如下,已知ξ的期望Eξ=8.9,則y的值為
0.4
ξ 7 8 9 10
P x 0.1 0.3 y

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)Sn為前n個圓的面積之和,則
lim
n→∞
Sn=(  )
A、2πr2
B、
8
3
πr2
C、4πr2
D、6πr2

查看答案和解析>>

科目: 來源: 題型:

6、將參加夏令營的600名學(xué)生編號為:001,002,…600,采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,且隨機抽得的號碼為003.這600名學(xué)生分住在三個營區(qū),從001到300在第Ⅰ營區(qū),從301到495住在第Ⅱ營區(qū),從496到600在第Ⅲ營區(qū),三個營區(qū)被抽中的人數(shù)一次為( 。

查看答案和解析>>

科目: 來源: 題型:

若i為虛數(shù)單位,圖中復(fù)平面內(nèi)點Z表示復(fù)數(shù)Z,則表示復(fù)數(shù)
z
1+i
的點是( 。
精英家教網(wǎng)
A、EB、FC、GD、H

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常數(shù),a∈R.
(1)討論a=-1時,f(x)的單調(diào)性、極值;
(2)求證:在(1)的條件下,|f(x)|>g(x)+
1
2

(3)是否存在實數(shù)a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案