相關(guān)習題
 0  31390  31398  31404  31408  31414  31416  31420  31426  31428  31434  31440  31444  31446  31450  31456  31458  31464  31468  31470  31474  31476  31480  31482  31484  31485  31486  31488  31489  31490  31492  31494  31498  31500  31504  31506  31510  31516  31518  31524  31528  31530  31534  31540  31546  31548  31554  31558  31560  31566  31570  31576  31584  266669 

科目: 來源: 題型:

若復數(shù)
cosα-i
2+i
(α∈R,i
為虛數(shù)單位)是純虛數(shù),則角α的值可能為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)(1)已知平面上兩定點A(-2,0).B(2,0),且動點M標滿足
MA
MB
=0,求動點M的軌跡方程;
(2)若把(1)的M的軌跡圖象向右平移一個單位,再向下平移一個單位,恰與直線x+ky-3=0 相切,試求實數(shù)k的值;
(3)如圖,l是經(jīng)過橢圓
y2
25
+
x2
16
=1
長軸頂點A且與長軸垂直的直線,E.F是兩個焦點,點P∈l,P不與A重合.若∠EPF=α,求α的取值范圍.
并將此題類比到雙曲線:
y2
25
-
x2
16
=1
,l是經(jīng)過焦點F且與實軸垂直的直線,A、B是兩個頂點,點P∈l,P不與F重合,請作出其圖象.若∠APB=α,寫出角α的取值范圍.(不需要解題過程)

查看答案和解析>>

科目: 來源: 題型:閱讀理解

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項an;并用解析幾何中的有關(guān)思想方法來解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學過的知識,把問題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目: 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=x|x-a|,其中x∈R.
(1)分別寫出當a=0.a(chǎn)=2.a(chǎn)=-2時函數(shù)f(x)的單調(diào)區(qū)間;
(2)判斷函數(shù)f(x)的奇偶性,并加以證明.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,A為銳角,a=30,△ABC的面積S=105,外接圓半徑R=17.
(1)求sinA.cosA的值;    (2)求△ABC的周長.

查看答案和解析>>

科目: 來源: 題型:

復數(shù)z=(
1
2
-
3
2
i)2
是一元二次方程ax2+bx+1=0(a,b∈R)的根,
(1)求a和b的值;      (2)若(a+bi)
.
u
+u=z
(u∈C),求u.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=-cos2x-4tsin
x
2
cos
x
2
+2t2-3t+4,x∈R,其中|t|≤1,將f(x)的最小值記為g(t).
(1)求函數(shù)g(t)的表達式;
(2)判斷g(t)在[-1,1]上的單調(diào)性,并求出g(t)的最值.

查看答案和解析>>

科目: 來源: 題型:

方程|x-2|=log2x的解的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目: 來源: 題型:

14、已知A(1,0).B(7,8),若點A和點B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是(  )

查看答案和解析>>

科目: 來源: 題型:

13、命題:“對任意的x∈R,x2-2x-3≤0”的否定是(  )

查看答案和解析>>

同步練習冊答案