相關(guān)習(xí)題
 0  38184  38192  38198  38202  38208  38210  38214  38220  38222  38228  38234  38238  38240  38244  38250  38252  38258  38262  38264  38268  38270  38274  38276  38278  38279  38280  38282  38283  38284  38286  38288  38292  38294  38298  38300  38304  38310  38312  38318  38322  38324  38328  38334  38340  38342  38348  38352  38354  38360  38364  38370  38378  266669 

科目: 來源: 題型:

如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點.
(I)證明:DE∥平面ABC;
(Ⅱ)若BB1=BC=2,求三棱錐A-A1BC的體積的最大值.

查看答案和解析>>

科目: 來源: 題型:

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 不患心肺疾病 合計
5
10
合計 50
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
3
5

(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(Ⅲ)已知在不患心肺疾病的5位男性中,有3位又患胃病.現(xiàn)在從不患心肺疾病的5位男性中,任意選出3位進(jìn)行其他方面的排查,求恰好有一位患胃病的概率.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:

已知命題“?x∈R,|x-a|+|x+1|≤2”是假命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,已知向量
AB
=(cos180,cos720)
,
AC
=(2cos630,2cos270)
,則cos∠BAC的值為( 。

查看答案和解析>>

科目: 來源: 題型:

隨機抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設(shè)1件產(chǎn)品的利潤(單位:萬元)為

(1)求的分布列;

(2)求1件產(chǎn)品的平均利潤(即的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個等級的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時要求1件產(chǎn)品的平均利潤不小于4.73萬元,則三等品率最多是多少?

查看答案和解析>>

科目: 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的底面邊長為1,高為h(h>3),點M在側(cè)棱BB1上移動,并且M到底面ABC的距離為x,且AM與側(cè)面BCC1B1所成的角為α.
(1)若α在區(qū)間[
π
6
,
π
4
]
上變化,求x的變化范圍; 
(2)若α為
π
6
,求AM與BC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知斜三棱柱側(cè)棱與底面邊長均為2,側(cè)棱與底面所成的角為60°,且側(cè)面ABB1A1與底面垂直.
(1)求異面直線B1C與C1A所成的角;
(2)求此斜三棱柱的表面積.

查看答案和解析>>

科目: 來源: 題型:

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是A1B1,CD的中點.
(1)求二面角E-AF-B的大。 
(2)求點B到面AEF的距離.

查看答案和解析>>

科目: 來源: 題型:

設(shè),橢圓方程為,拋物線方程為.如圖所示,過點軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點

(1)求滿足條件的橢圓方程和拋物線方程;

(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).

查看答案和解析>>

科目: 來源: 題型:

已知邊長為
2
的正方形ABCD沿對角線AC折成直二面角,使D到P的位置.
(1)求直線PA與BC所成的角;
(2)若M為線段BC上的動點,當(dāng)BM:BC為何值時,平面PAC與平面PAM所成的銳二面角為45°.

查看答案和解析>>

同步練習(xí)冊答案