相關(guān)習(xí)題
 0  46159  46167  46173  46177  46183  46185  46189  46195  46197  46203  46209  46213  46215  46219  46225  46227  46233  46237  46239  46243  46245  46249  46251  46253  46254  46255  46257  46258  46259  46261  46263  46267  46269  46273  46275  46279  46285  46287  46293  46297  46299  46303  46309  46315  46317  46323  46327  46329  46335  46339  46345  46353  266669 

科目: 來源: 題型:

A.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,DE交AB于點F.求證:△PDF∽△POC.
B.已知矩陣A=
.
1-2
3-7
.

(1)求逆矩陣A-1
(2)若矩陣X滿足AX=
3
1
,試求矩陣X.
C.坐標系與參數(shù)方程
已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1:ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
,(t∈R)交于A、B兩點.求證:OA⊥OB.
D.已知x,y,z均為正數(shù),求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目: 來源: 題型:

如圖,海岸線MAN,∠A=2θ,現(xiàn)用長為l的攔網(wǎng)圍成一養(yǎng)殖場,其中B∈MA,C∈NA.
(1)若BC=l,求養(yǎng)殖場面積最大值;
(2)若B、C為定點,BC<l,在折線MBCN內(nèi)選點D,使BD+DC=l,求四邊形養(yǎng)殖場DBAC的最大面積;
(3)若(2)中B、C可選擇,求四邊形養(yǎng)殖場ACDB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(1+cosα,sinα),
b
=(1-cosβ,sinβ),
c
=(1,0)
,α∈(0,π),β∈(π,2π),向量
a
c
夾角為θ1,向量
b
c
夾角為θ2,且θ12=
π
6
,若△ABC中角A、B、C的對邊分別為a、b、c,且角A=β-α.
求(Ⅰ)求角A 的大; 
(Ⅱ)若△ABC的外接圓半徑為4
3
,試求b+c取值范圍.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)滿足lnx=
1+f(x)
1-f(x)
,且x1,x2均大于e,f(x1)+f(x2)=1,則f(x1x2)的最小值為
5
7
5
7

查看答案和解析>>

科目: 來源: 題型:

如圖,在棱長為5的正方體ABCD-A1B1C1D1中,EF是棱AB上的一條線段,且EF=2,Q是A1D1的中點,點P是棱C1D1上的動點,則四面體PQEF的體積為
25
6
25
6

查看答案和解析>>

科目: 來源: 題型:

某地為了調(diào)查職業(yè)滿意度,決定用分層抽樣的方法從公務(wù)員、教師、自由職業(yè)者三個群體的相關(guān)人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見下表,若從調(diào)查小組中的公務(wù)員和教師中隨機選2人撰寫調(diào)查報告,則其中恰好有1人來自公務(wù)員的概率為
 

  相關(guān)人員數(shù) 抽取人數(shù)
公務(wù)員 32 x
教師 48 y
自由職業(yè)者 64 4

查看答案和解析>>

科目: 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
2+3i-3+2i
的虛部是
-1
-1

查看答案和解析>>

科目: 來源: 題型:

函數(shù)的反函數(shù)是                                     

A.                     B.        

C.                          D.

查看答案和解析>>

科目: 來源: 題型:

正項等差數(shù)列中,,則的值為

A.26                          B.52                          C.104                         D.56

查看答案和解析>>

科目: 來源: 題型:

(2012•佛山二模)設(shè)曲線C:x2-y2=1上的點P到點An(0,an)的距離的最小值為dn,若a0=0,an=
2
dn-1,n∈N*.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)點Bn(an,an+1)到直線ln:x-y+
1
2n
=0的距離為tn,證明:對?n∈N*,都有不等式:t1+t2+…+tn
1
2
成立.

查看答案和解析>>

同步練習(xí)冊答案