相關(guān)習(xí)題
 0  49024  49032  49038  49042  49048  49050  49054  49060  49062  49068  49074  49078  49080  49084  49090  49092  49098  49102  49104  49108  49110  49114  49116  49118  49119  49120  49122  49123  49124  49126  49128  49132  49134  49138  49140  49144  49150  49152  49158  49162  49164  49168  49174  49180  49182  49188  49192  49194  49200  49204  49210  49218  266669 

科目: 來源: 題型:

已知圓方程x2+y2-2x-4y+m=0.
(1)若圓與直線x+2y-4=0相交于M,N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn))求m的值;
(2)在(1)的條件下,求以MN為直徑的圓的方程.

查看答案和解析>>

科目: 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
2

(1)求曲線C的方程.
(2)過點(diǎn)M(1,2)的直線l與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

菱形ABCD的邊長為,H分別在AB、BC、CD、DA上,且

,沿EH與FG把菱形的兩個(gè)銳角對(duì)折起來,使A、C兩點(diǎn)重合,這時(shí)A點(diǎn)到平面EFGH的距離為                                       

A.                       B.                    C.                D.

查看答案和解析>>

科目: 來源: 題型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)判斷⊙O1和⊙O2的位置關(guān)系;
(Ⅱ)當(dāng)⊙O2半徑最大時(shí),(1)求⊙O1和⊙O2公共弦所在直線l1的方程;
(2)設(shè)直線l1交x軸于點(diǎn)F,拋物線C以坐標(biāo)原點(diǎn)為頂點(diǎn),以F為焦點(diǎn),直線l2經(jīng)過(3,0)與拋物線C相交于A、B兩點(diǎn),設(shè)∠AOB=α(O為坐標(biāo)原點(diǎn)),求α最大時(shí)cosα的值.

查看答案和解析>>

科目: 來源: 題型:

要得到函數(shù)的圖象,只需將函數(shù)的圖像

A.向右平移個(gè)單位       B. 向右平移個(gè)單位    

C.向左平移個(gè)單位       D. 向左平移個(gè)單位

查看答案和解析>>

科目: 來源: 題型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)求⊙O2半徑的最大值;
(Ⅱ)當(dāng)⊙O2半徑最大時(shí),試判斷⊙O1和⊙O2的位置關(guān)系;
(Ⅲ)⊙O2半徑最大時(shí),如果⊙O1和⊙O2相交.
(1)求⊙O1和⊙O2公共弦所在直線l1的方程;
(2)設(shè)直線l1交x軸于點(diǎn)F,拋物線C以坐標(biāo)原點(diǎn)O為頂點(diǎn),以F為焦點(diǎn),直線l2:y=k(x-3)(k≠0)與拋物線C相交于A、B兩點(diǎn),證明:
OA
OB
為定值.

查看答案和解析>>

科目: 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(-1,0)和B(3,0),且圓心在直線x-y=0上.
(1)求圓C的方程;
(2)若點(diǎn)P(x,y)為圓C上任意一點(diǎn),求點(diǎn)P到直線x+2y+4=0的距離的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

已知圓M:2x2+2y2-8x-8y-1=0,直線l:x+y-9=0,過l上一點(diǎn)A作△ABC,使得∠BAC=45°,邊AB過圓心M,且B,C在圓M上,求點(diǎn)A縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知圓C經(jīng)過坐標(biāo)原點(diǎn)O,A(6,0),B(0,8).
(Ⅰ)求圓C的方程;
(Ⅱ)過點(diǎn)P(-2,0)的直線l和圓C的相切,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0,若直線l過點(diǎn)P且被圓C截得的線段AB長為4
3

(Ⅰ)求直線l的方程;
(Ⅱ)設(shè)直線l與圓C交于A、B兩點(diǎn),求以線段AB為直徑的圓Q方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案