10.如圖所示,在豎直平面內(nèi),虛線MO與水平線PQ相交于O,二者夾角θ=30°,在MOP范圍內(nèi)存在豎直向下的勻強(qiáng)電場(chǎng),電場(chǎng)強(qiáng)度為E,MOQ上方的某個(gè)區(qū)域有垂直紙面向里的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度為B,O點(diǎn)處在磁場(chǎng)的邊界上,現(xiàn)有一群質(zhì)量為m、電量為+q的帶電粒子在紙面內(nèi)以速度v(0≤v≤$\frac{E}{B}$)垂直于MO從O點(diǎn)射入磁場(chǎng),所有粒子通過(guò)直線MO時(shí),速度方向均平行于PQ向左,不計(jì)粒子的重力和粒子間的相互作用力.求:
(1)速度最大的粒子在磁場(chǎng)中的運(yùn)動(dòng)時(shí)間;
(2)速度最大的粒子打在水平線POQ上的位置離O點(diǎn)的距離;
(3)磁場(chǎng)區(qū)域的最小面積.

分析 (1)根據(jù)題設(shè)條件畫(huà)出粒子運(yùn)動(dòng)的軌跡,根據(jù)軌道知,粒子經(jīng)歷三個(gè)運(yùn)動(dòng),磁場(chǎng)中的勻速圓周運(yùn)動(dòng)、離開(kāi)磁場(chǎng)后的勻速直線運(yùn)動(dòng)和進(jìn)入電場(chǎng)后的類(lèi)平拋運(yùn)動(dòng),根據(jù)題設(shè)條件分三段分別利用運(yùn)動(dòng)規(guī)律求解粒子運(yùn)動(dòng)的時(shí)間即可;
(2)分三段求PO間的距離,圓周運(yùn)動(dòng)部分、勻速運(yùn)動(dòng)部分和類(lèi)平拋運(yùn)動(dòng)部分.
(3)根據(jù)題目條件,磁場(chǎng)區(qū)域只需要存在于粒子發(fā)生偏轉(zhuǎn)的過(guò)程中,作出不同速度粒子的偏情況,求出滿足條件的磁場(chǎng)區(qū)域即可.

解答 解:(1)因粒子通過(guò)直線MO時(shí),速度方向均平行于PQ向左,說(shuō)明粒子速度方向改變了$\frac{2π}{3}$,由幾何關(guān)系可得粒子的運(yùn)動(dòng)軌跡如圖所示.設(shè)粒子在勻強(qiáng)磁場(chǎng)中做勻速圓周運(yùn)動(dòng)的半徑為R,周期為T(mén),粒子在勻強(qiáng)磁場(chǎng)中運(yùn)動(dòng)時(shí)間為t1
因?yàn)?T=\frac{2πm}{Bq}$
所以${t_1}=\frac{1}{3}T=\frac{2πm}{3qB}$
(2)由 $Bqv=\frac{m{v}^{2}}{R}$
得$R=\frac{mv}{qB}=\frac{mE}{{q{B^2}}}$
設(shè)粒子自N點(diǎn)水平飛出磁場(chǎng),出磁場(chǎng)后應(yīng)做勻速運(yùn)動(dòng)至OM,設(shè)勻速運(yùn)動(dòng)的距離為s,由幾何關(guān)系知:$s=\frac{R}{tanθ}=\frac{{\sqrt{3}mE}}{{q{B^2}}}$
過(guò)MO后粒子在電場(chǎng)中做類(lèi)平拋運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t2,
則:$R+Rsin{30°}=\frac{1}{2}\frac{qE}{m}{t_2}^2$,${t_2}=\frac{{\sqrt{3}m}}{qB}$,
由幾何關(guān)系知,速度最大的粒子打在水平線POQ上的位置離O點(diǎn)的距離$L=OP=Rcosθ+s+v{t_2}=\frac{{\sqrt{3}mE}}{{2{B^2}q}}+\frac{{\sqrt{3}mE}}{{{B^2}q}}+\frac{{\sqrt{3}mE}}{{{B^2}q}}=\frac{{5\sqrt{3}mE}}{{2{B^2}q}}$,
(3)由題知速度大小不同的粒子均要水平通過(guò)OM,則其飛出磁場(chǎng)的位置均應(yīng)在ON的連線上,故磁場(chǎng)范圍的最小面積△S是速度最大的粒子在磁場(chǎng)中的軌跡與ON所圍成的面積,
扇形OO′N(xiāo)的面積$S=\frac{1}{3}π{R}^{2}$ 
△OO′N(xiāo)的面積為:S′=R2cos30°sin30°=$\frac{\sqrt{3}}{4}{R}^{2}$
又△S=S-S'
聯(lián)立得:$△S=(\frac{π}{3}-\frac{{\sqrt{3}}}{4})\frac{{{m^2}{E^2}}}{{{q^2}{B^4}}}$
答:(1)速度最大的粒子在磁場(chǎng)中的運(yùn)動(dòng)時(shí)間為$\frac{2πm}{3qB}$;
(2)速度最大的粒子打在水平線POQ上的位置離O點(diǎn)的距離為$\frac{5\sqrt{3}mE}{2{B}^{2}q}$;
(3)磁場(chǎng)區(qū)域的最小面積為$(\frac{π}{3}-\frac{\sqrt{3}}{4})\frac{{m}^{2}{E}^{2}}{{q}^{2}{B}^{4}}$.

點(diǎn)評(píng) 本題考查帶電粒子在磁場(chǎng)中做勻速圓周運(yùn)動(dòng)和在電場(chǎng)中做類(lèi)平拋運(yùn)動(dòng)的知識(shí),對(duì)學(xué)生幾何能力要求較高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:解答題

20.如圖所示,絕熱隔板S把絕熱的氣缸分隔成體積相等的兩部分,S與氣缸壁的接觸是光滑的,兩部分中分別盛有相同質(zhì)量、相同溫度的同種氣體a和b,氣體分子之間相互作用可忽略不計(jì).現(xiàn)通過(guò)恒定電壓為U的電源和阻值為R的電熱絲構(gòu)成電路,對(duì)氣體a緩慢加熱一段時(shí)間t后,a、b各自達(dá)到新的平衡狀態(tài).在此過(guò)程中,氣體a內(nèi)能增加量為△U,試求氣體b的內(nèi)能增加量.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:選擇題

1.如圖所示,理想變壓器的原線圈匝數(shù)n1=1600匝,副線圈匝數(shù)n2=400匝,交流電源的電動(dòng)勢(shì)瞬時(shí)值e=220$\sqrt{2}$ sinl00πt(V).交流電表和電壓表的內(nèi)阻對(duì)電路的影響可忽略計(jì).則(  )
A.當(dāng)可變電阻R的阻值為110Ω時(shí),電流表的示數(shù)為0.5 A
B.當(dāng)可變電阻R的阻值為110Ω時(shí),電流表的示數(shù)為2 A
C.當(dāng)可變電阻R的附值增大時(shí),電壓表的示數(shù)增大
D.通過(guò)可變電阻R的突變電流的頻率為50 Hz

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:選擇題

18.如圖所示,質(zhì)量為m帶電量為q的小球用長(zhǎng)L的絕緣輕線系于O點(diǎn),整個(gè)裝置處于水平的勻強(qiáng)電場(chǎng)中.小球靜止時(shí)懸線與豎直方向夾角的正切值為tanθ.若在O點(diǎn)放一點(diǎn)電荷+Q,則小球再次靜止時(shí)懸線與豎直方向夾角的正切值為tanФ.下列說(shuō)法正確的是( 。
A.tanФ>tanθB.tanФ<tanθC.tanФ=tanθD.無(wú)法判斷

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:解答題

5.利空空間探測(cè)器可對(duì)地球及其他天體進(jìn)行探測(cè),若探測(cè)器從極遠(yuǎn)處迎面飛向衛(wèi)星,探測(cè)器從行星旁繞過(guò)時(shí),由于行星的引力作用,使探測(cè)器的運(yùn)動(dòng)速率增大,這種現(xiàn)象稱(chēng)之為“彈弓效應(yīng)”,在航天技術(shù)中“彈弓效應(yīng)”是用來(lái)增大人造天體運(yùn)動(dòng)速率的一種有效方法.
如圖是“彈弓效應(yīng)”的示意圖:以太陽(yáng)為參考系,質(zhì)量為m的探測(cè)器以速率v0飛向質(zhì)量為M的行星,此時(shí)行星的速率為u0,方向與v0相反.當(dāng)探測(cè)器繞過(guò)行星遠(yuǎn)離行星到極遠(yuǎn)處,速度為v,此時(shí)行星的速率為u,v和u的方向相同,由于m<<M,的條件下,v0、v、u0、u的方向可視為相互平行,運(yùn)動(dòng)過(guò)程中動(dòng)量守恒.
求:在m<<M的條件下,寫(xiě)出用v0、u0表示探測(cè)器離行星極遠(yuǎn)處的速率v.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:多選題

15.下列說(shuō)法中正確的是( 。
A.愛(ài)因斯坦的光子說(shuō)解釋了光電效應(yīng),光電子的最大初動(dòng)能與入射光頻率有關(guān)
B.各種原子的發(fā)光光譜都是線狀譜,可將太陽(yáng)光譜中的暗線與元素光譜比較確定太陽(yáng)成分
C.根據(jù)α粒子散射實(shí)驗(yàn),盧瑟福提出了原子核式模型,確定了一般原子核半徑數(shù)量級(jí)為10-15m
D.原子核的比結(jié)合能大小可反應(yīng)原子核的穩(wěn)定程度,該值隨質(zhì)量數(shù)的增加而增大
E.康普頓效應(yīng)表明光子除了能量之外還有動(dòng)量,揭示了光的粒子性

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:解答題

2.如圖所示,虛線MO與水平線PQ相交于O,二者夾角θ=30°,在MO右側(cè)存在電場(chǎng)強(qiáng)度為E、方向豎直向上的勻強(qiáng)電場(chǎng),MO左側(cè)某個(gè)區(qū)域存在磁感應(yīng)強(qiáng)度為B、垂直紙面向里的勻強(qiáng)磁場(chǎng),O點(diǎn)處在磁場(chǎng)的邊界上,現(xiàn)有一群質(zhì)量為m、電量為+q的帶電粒子在紙面內(nèi)以速度v(0≤v≤E/B)垂直于MO從O點(diǎn)射入磁場(chǎng),所有粒子通過(guò)直線MO時(shí),速度方向均平行于PQ向右,不計(jì)粒子的重力和粒子間的相互作用力,求:

(1)速度最大的粒子自O(shè)開(kāi)始射入磁場(chǎng)至返回水平線POQ所用的時(shí)間.
(2)磁場(chǎng)區(qū)域的最小面積.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:選擇題

19.如圖所示,在一勻強(qiáng)電場(chǎng)中的O點(diǎn)固定一電量為Q的正點(diǎn)電荷,設(shè)正點(diǎn)電荷Q的電場(chǎng)與勻強(qiáng)電場(chǎng)互不影響,a、b、c、d為電場(chǎng)中的四點(diǎn),分布在以O(shè)為圓心、r為半徑的圓周上,一電量為q的正檢驗(yàn)電荷放在a點(diǎn)時(shí)恰好平衡.則下列說(shuō)法正確的是( 。
A.電場(chǎng)中a、c兩點(diǎn)間的電勢(shì)差Uac=$\frac{kQ}{2r}$
B.電場(chǎng)中a、c兩點(diǎn)間的電勢(shì)差Uac=$\frac{2kQ}{r}$
C.電場(chǎng)中b、d兩點(diǎn)間的電勢(shì)差Ubd=$\frac{2kQ}{r}$
D.電場(chǎng)中b、d兩點(diǎn)間的電勢(shì)差Ubd=$\frac{kQ}{2r}$

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:選擇題

20.2008年北京奧運(yùn)會(huì)上牙買(mǎi)加選手博爾特以9秒69的成績(jī)打破男子100米世界記錄并獲得金牌,博爾特之所以能夠取得冠軍是因?yàn)椋ā 。?table class="qanwser">A.沖刺時(shí)的末速度大B.平均速度大C.起跑時(shí)的初速度大D.起跑時(shí)的加速度大

查看答案和解析>>

同步練習(xí)冊(cè)答案