10.彈簧在學(xué)校組織的趣味運(yùn)動(dòng)會(huì)上,某科技小組為大家提供了一個(gè)寓學(xué)于樂的游戲.如圖所示,將一質(zhì)量為0.1kg的鋼球放在O點(diǎn),用彈射裝置將其彈出,其實(shí)沿著光滑的半環(huán)形軌道OA和AB運(yùn)動(dòng),BC段為一段長為L=2.0m的粗糙平面,DEFG為接球槽.圓弧OA和AB的半徑分別為r=0.2m,R=0.4m,小球與BC段的動(dòng)摩擦因數(shù)為μ=0.7,C點(diǎn)離接球槽的高度為h=1.25m,水平距離為x=0.5m,接球槽足夠大,g取10m/s2.求:
(1)要使鋼球恰好不脫離圓軌道,鋼球在A點(diǎn)的速度多大?
(2)在B位置對(duì)半圓軌道的壓力多大?
(3)要使鋼球最終能落入槽中,彈射速度v0至少多大?

分析 (1)要使鋼球恰好不脫離圓軌道,鋼球在A點(diǎn)由重力提供向心力,可求解速度;
(2)從A到B根據(jù)動(dòng)能定理求解B點(diǎn)的速度,在B位置時(shí),對(duì)鋼球根據(jù)牛頓第二定律求解支持力,再根據(jù)牛頓第三定律得到壓力大小;
(3)鋼球剛好落入槽中時(shí)做平拋運(yùn)動(dòng),分解為兩個(gè)方向的運(yùn)動(dòng)求解經(jīng)過C點(diǎn)的速度,從O到C點(diǎn),根據(jù)動(dòng)能定理有求解v0,

解答 解:(1)要使鋼球恰好不脫離圓軌道,鋼球在A點(diǎn)有:$mg=m\frac{{v}_{A}^{2}}{r}$
解得:${v}_{A}=\sqrt{gr}=\sqrt{2}m/s$
(2)從A到B根據(jù)動(dòng)能定理有:$mg•2R=\frac{1}{2}m{v}_{B}^{2}-\frac{1}{2}m{v}_{A}^{2}$
在B位置時(shí),對(duì)鋼球:${F}_{B}-mg=m\frac{{v}_{B}^{2}}{R}$
聯(lián)立解得:FB=5.5N
根據(jù)牛頓第三定律,鋼球?qū)Π雸A軌道的壓力為5.5N;
(3)使鋼球剛好落入槽中時(shí)對(duì)鋼球:
$h=\frac{1}{2}g{t}^{2}$
x=vCt
解得:vC=1m/s
從O到C點(diǎn),根據(jù)動(dòng)能定理有:
$mgR-μmgL=\frac{1}{2}m{v}_{C}^{2}-\frac{1}{2}m{v}_{0}^{2}$
解得:${v}_{0}=\sqrt{21}m/s$
故要使鋼球最終能落入槽中,彈射速度v0至少為$\sqrt{21}m/s$.
答:(1)要使鋼球恰好不脫離圓軌道,鋼球在A點(diǎn)的速度為$\sqrt{2}m/s$;
(2)在B位置對(duì)半圓軌道的壓為5.5N;
(3)要使鋼球最終能落入槽中,彈射速度v0至少為$\sqrt{21}m/s$.

點(diǎn)評(píng) 本題考查了動(dòng)能定理、牛頓第二定律及平拋運(yùn)動(dòng)的綜合運(yùn)用,知道最高點(diǎn)和最低點(diǎn)向心力的來源,結(jié)合牛頓第二定律和動(dòng)能定理進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:多選題

1.下列敘述中正確的有( 。
A.在不同的慣性參考系中,光在真空中的速度都是相同的
B.兩列波相疊加產(chǎn)生干涉現(xiàn)象,則振動(dòng)加強(qiáng)區(qū)域與減弱區(qū)域交替變化
C.光的偏振現(xiàn)象說明光波是縱波
D.當(dāng)觀察者向波源靠近時(shí),接收到的波的頻率增大,但波源自身的頻率不變

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

2.物體在5個(gè)恒力的作用做勻速直線運(yùn)動(dòng),現(xiàn)突然撤去其中的一個(gè)力,以后物體的運(yùn)動(dòng)可能是( 。
A.勻加速直線運(yùn)動(dòng)B.勻速圓周運(yùn)動(dòng)
C.勻變速曲線運(yùn)動(dòng)D.勻減速直線運(yùn)動(dòng)最終靜止

查看答案和解析>>

科目:高中物理 來源: 題型:計(jì)算題

19.一輛汽車的額定功率為80kW,運(yùn)動(dòng)中所受的阻力恒為4.0×103N,汽車質(zhì)量為4.0×103kg,沿水平路面行駛.汽車運(yùn)動(dòng)過程中始終未超過額定功率.求:
(1)汽車運(yùn)動(dòng)的最大速度;
(2)汽車以額定功率行駛時(shí),當(dāng)車速為36km/h時(shí)汽車的加速度.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

5.如圖所示,有一邊長為L正方形均質(zhì)導(dǎo)線框abcd靜止在豎直面內(nèi),bc邊水平.在其下方MM’與NN’(圖中未畫出)兩條水平線之間有一個(gè)垂直導(dǎo)線框的勻強(qiáng)磁場,其高度為H.某時(shí)刻,由靜止釋放導(dǎo)線框,假設(shè)不計(jì)空氣阻力,bc邊一直保持水平且導(dǎo)線框一直處于豎直面內(nèi).其v-t圖如圖乙,其中0與t1、t1與t3、t4與t5之間的圖象是相互平行的直線,下列說法正確的是(  )
A.由乙圖可知H>L
B.在t2<t<t3時(shí)間內(nèi)線框中感應(yīng)電動(dòng)勢(shì)均勻增大
C.導(dǎo)線框在t4時(shí)刻的速度一定不小于t1時(shí)刻的速度
D.若陰影部分面積的數(shù)值為d,則d=H或d=L

查看答案和解析>>

科目:高中物理 來源: 題型:計(jì)算題

15.如圖所示,兩個(gè)半徑為R的四分之一圓弧構(gòu)成的光滑細(xì)管道ABC豎直放置,且固定在光滑水平面上,圓心連線O1O2水平,輕彈簧左端固定在豎直擋板上,右端與質(zhì)量為m的小球相連,軌道右端有一薄板,薄板左端D到管道右道C的水平距離為R,開始時(shí)彈簧處于鎖定狀態(tài),具有的彈性勢(shì)能為3mgR,其中g(shù)為重力加速度,現(xiàn)解除鎖定,小球離開彈簧后進(jìn)入管道,最后從C點(diǎn)拋出.
(1)求小球經(jīng)過C點(diǎn)時(shí)的動(dòng)能;
(2)求小球經(jīng)過C點(diǎn)時(shí)對(duì)管道的壓力;
(3)討論彈簧鎖定時(shí)彈性勢(shì)能應(yīng)滿足什么條件,從C點(diǎn)拋出的小球才能擊中薄板DE.

查看答案和解析>>

科目:高中物理 來源: 題型:計(jì)算題

2.如圖所示,一個(gè)上下都與大氣相通的直圓筒,中間用兩個(gè)活塞A與B堵住一定質(zhì)量的理想氣體,活塞面積為0.01m2,A與B都可沿圓筒無摩擦地上下滑動(dòng),但不漏氣,A的質(zhì)量為M=10kg,B的質(zhì)量為m=0.5kg,B與一勁度系數(shù)為K=l000N/m較長的彈簧相連,已知大氣壓強(qiáng)為P0=1.0×l05Pa,平衡時(shí)兩活塞間的距離l0=39cm.現(xiàn)用力壓A,使A緩慢向下移動(dòng)一段距離后再次平衡,此時(shí)用于壓A的力F=200N.求活塞A向下移動(dòng)的距離.(假定氣體溫度保持不變,B活塞未到下方通氣孔,g取l0rn/s2

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

19.如圖,在勻強(qiáng)磁場中靜止的碳14(${\;}_{6}^{14}$C)原子核發(fā)生一次衰變,放射出的粒子與反沖核做勻速圓周運(yùn)動(dòng)的半徑之比為7:1.粒子與反沖核的( 。
A.動(dòng)量大小之比為7:1B.電荷量之比為1:7
C.動(dòng)能之比為1:7D.周期之比為2:1

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

20.如圖所示,將一均勻?qū)Ь圍成一圓心角為90°的扇形導(dǎo)線框OMN,其中OM=R,線框總電阻為r,圓弧MN的圓心為O點(diǎn),將導(dǎo)線框的O點(diǎn)置于直角坐標(biāo)系的原點(diǎn),其中第二和第四象限存在垂直紙面向里的勻強(qiáng)磁場,其磁感應(yīng)強(qiáng)度大小為B,第三象限存在垂直紙面向外的勻強(qiáng)磁場,磁感應(yīng)強(qiáng)度大小為2B.從t=0時(shí)刻開始,讓導(dǎo)線框以O(shè)點(diǎn)為圓心,以恒定的角速度ω沿逆時(shí)針方向做勻速圓周運(yùn)動(dòng),則線框中的電流有效值為( 。
A.$\frac{Bω{R}^{2}}{2r}$B.$\frac{3Bω{R}^{2}}{2r}$C.$\frac{2Bω{R}^{2}}{r}$D.$\frac{\sqrt{5}Bω{R}^{2}}{2r}$

查看答案和解析>>

同步練習(xí)冊(cè)答案