高考復(fù)習(xí)科目:數(shù)學(xué)      高中數(shù)學(xué)總復(fù)習(xí)(九) 

復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第九章-立體幾何

復(fù)習(xí)范圍:第九章

編寫時(shí)間:2004-7

修訂時(shí)間:總計(jì)第三次 2005-4

                                   I. 基礎(chǔ)知識要點(diǎn)           

一、 平面.

1. 經(jīng)過不在同一條直線上的三點(diǎn)確定一個(gè)面.

注:兩兩相交且不過同一點(diǎn)的四條直線必在同一平面內(nèi).

2. 兩個(gè)平面可將平面分成34部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)

3. 過三條互相平行的直線可以確定13個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)

[注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有01個(gè).

4. 三個(gè)平面最多可把空間分成 8 部分.(X、Y、Z三個(gè)方向)

二、 空間直線.

1. 空間直線位置分三種:相交、平行、異面. 相交直線―共面有反且有一個(gè)公共點(diǎn);平行直線―共面沒有公共點(diǎn);異面直線―不同在任一平面內(nèi)

[注]:①兩條異面直線在同一平面內(nèi)射影一定是相交的兩條直線.(×)(可能兩條直線平行,也可能是點(diǎn)和直線等)

②直線在平面外,指的位置關(guān)系:平行或相交

試題詳情

③若直線ab異面,a平行于平面,b的關(guān)系是相交、平行、在平面內(nèi).

④兩條平行線在同一平面內(nèi)的射影圖形是一條直線或兩條平行線或兩點(diǎn).

⑤在平面內(nèi)射影是直線的圖形一定是直線.(×)(射影不一定只有直線,也可以是其他圖形)

⑥在同一平面內(nèi)的射影長相等,則斜線長相等.(×)(并非是從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段)

試題詳情

是夾在兩平行平面間的線段,若,則的位置關(guān)系為相交或平行或異面.

試題詳情

2. 異面直線判定定理:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線)

試題詳情

3. 平行公理:平行于同一條直線的兩條直線互相平行.

試題詳情

4. 等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等(如下圖).

試題詳情

                                                (二面角的取值范圍

試題詳情

                                                (直線與直線所成角

試題詳情

                                                (斜線與平面成角

試題詳情

                                                (直線與平面所成角

試題詳情

(向量與向量所成角

推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.

試題詳情

5. 兩異面直線的距離:公垂線的長度.

空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.

試題詳情

是異面直線,則過外一點(diǎn)P,過點(diǎn)P且與都平行平面有一個(gè)或沒有,但與距離相等的點(diǎn)在同一平面內(nèi). (在這個(gè)做出的平面內(nèi)不能叫平行的平面)

試題詳情

三、 直線與平面平行、直線與平面垂直.

1. 空間直線與平面位置分三種:相交、平行、在平面內(nèi).

試題詳情

2. 直線與平面平行判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行.(“線線平行,線面平行”)

試題詳情

[注]:①直線與平面內(nèi)一條直線平行,則. (×)(平面外一條直線)

試題詳情

②直線與平面內(nèi)一條直線相交,則與平面相交. (×)(平面外一條直線)

試題詳情

③若直線與平面平行,則內(nèi)必存在無數(shù)條直線與平行. (√)(不是任意一條直線,可利用平行的傳遞性證之)

④兩條平行線中一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面. (×)(可能在此平面內(nèi))

⑤平行于同一直線的兩個(gè)平面平行.(×)(兩個(gè)平面可能相交)

⑥平行于同一個(gè)平面的兩直線平行.(×)(兩直線可能相交或者異面)

試題詳情

⑦直線與平面所成角相等,則.(×)(可能相交)

試題詳情

3. 直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.(“線面平行,線線平行”)

試題詳情

4. 直線與平面垂直是指直線與平面任何一條直線垂直,過一點(diǎn)有且只有一條直線和一個(gè)平面垂直,過一點(diǎn)有且只有一個(gè)平面和一條直線垂直.

試題詳情

l          若,,得(三垂線定理),

試題詳情

得不出. 因?yàn)?sub>,但不垂直OA.

l          三垂線定理的逆定理亦成立.

直線與平面垂直的判定定理一:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.(“線線垂直,線面垂直”)

直線與平面垂直的判定定理二:如果平行線中一條直線垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面.

推論:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.

[注]:①垂直于同一平面的兩個(gè)平面平行.(×)(可能相交,垂直于同一條直線的兩個(gè)平面平行)

②垂直于同一直線的兩個(gè)平面平行.(√)(一條直線垂直于平行的一個(gè)平面,必垂直于另一個(gè)平面)

③垂直于同一平面的兩條直線平行.(√)

試題詳情

5. ⑴垂線段和斜線段長定理:從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長的斜線段較長;②相等的斜線段的射影相等,較長的斜線段射影較長;③垂線段比任何一條斜線段短.

[注]:垂線在平面的射影為一個(gè)點(diǎn). [一條直線在平面內(nèi)的射影是一條直線.(×)]

⑵射影定理推論:如果一個(gè)角所在平面外一點(diǎn)到角的兩邊的距離相等,那么這點(diǎn)在平面內(nèi)的射影在這個(gè)角的平分線上

試題詳情

四、 平面平行與平面垂直.

1. 空間兩個(gè)平面的位置關(guān)系:相交、平行.

試題詳情

2. 平面平行判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,哪么這兩個(gè)平面平行.(“線面平行,面面平行”)

推論:垂直于同一條直線的兩個(gè)平面互相平行;平行于同一平面的兩個(gè)平面平行.

[注]:一平面間的任一直線平行于另一平面.

試題詳情

3. 兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平面平行同時(shí)和第三個(gè)平面相交,那么它們交線平行.(“面面平行,線線平行”)

試題詳情

4. 兩個(gè)平面垂直性質(zhì)判定一:兩個(gè)平面所成的二面角是直二面角,則兩個(gè)平面垂直.

兩個(gè)平面垂直性質(zhì)判定二:如果一個(gè)平面與一條直線垂直,那么經(jīng)過這條直線的平面垂直于這個(gè)平面.(“線面垂直,面面垂直”)

注:如果兩個(gè)二面角的平面對應(yīng)平面互相垂直,則兩個(gè)二面角沒有什么關(guān)系.

試題詳情

5. 兩個(gè)平面垂直性質(zhì)定理:如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線也垂直于另一個(gè)平面.

推論:如果兩個(gè)相交平面都垂直于第三平面,則它們交線垂直于第三平面.

試題詳情

證明:如圖,找O作OA、OB分別垂直于

試題詳情

因?yàn)?sub>.

試題詳情

6. 兩異面直線任意兩點(diǎn)間的距離公式:為銳角取加,為鈍取減,綜上,都取加則必有

試題詳情

7. ⑴最小角定理:為最小角,如圖)

⑵最小角定理的應(yīng)用(∠PBN為最小角)

簡記為:成角比交線夾角一半大,且又比交線夾角補(bǔ)角一半長,一定有4條.

成角比交線夾角一半大,又比交線夾角補(bǔ)角小,一定有2條.

成角比交線夾角一半大,又與交線夾角相等,一定有3條或者2條.

成角比交線夾角一半小,又與交線夾角一半小,一定有1條或者沒有.

五、 棱錐、棱柱.

試題詳情

1. 棱柱.

試題詳情

⑴①直棱柱側(cè)面積:為底面周長,是高)該公式是利用直棱柱的側(cè)面展開圖為矩形得出的.

試題詳情

②斜棱住側(cè)面積:是斜棱柱直截面周長,是斜棱柱的側(cè)棱長)該公式是利用斜棱柱的側(cè)面展開圖為平行四邊形得出的.

試題詳情

⑵{四棱柱}{平行六面體}{直平行六面體}{長方體}{正四棱柱}{正方體}.

試題詳情

{直四棱柱}{平行六面體}={直平行六面體}.

試題詳情

⑶棱柱具有的性質(zhì):

試題詳情

①棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都相等;直棱柱的各個(gè)側(cè)面都是矩形;正棱柱的各個(gè)側(cè)面都是全等的矩形.

②棱柱的兩個(gè)底面與平行于底面的截面是對應(yīng)邊互相平行的全等多邊形.

③過棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形.

注:①棱柱有一個(gè)側(cè)面和底面的一條邊垂直可推測是直棱柱. (×)

(直棱柱不能保證底面是鉅形可如圖)

②(直棱柱定義)棱柱有一條側(cè)棱和底面垂直.

⑷平行六面體:

定理一:平行六面體的對角線交于一點(diǎn),并且在交點(diǎn)處互相平分.

[注]:四棱柱的對角線不一定相交于一點(diǎn).

定理二:長方體的一條對角線長的平方等于一個(gè)頂點(diǎn)上三條棱長的平方和.

試題詳情

推論一:長方體一條對角線與同一個(gè)頂點(diǎn)的三條棱所成的角為,則.

試題詳情

推論二:長方體一條對角線與同一個(gè)頂點(diǎn)的三各側(cè)面所成的角為,則.

[注]:①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱.(×)(斜四面體的兩個(gè)平行的平面可以為矩形)

②各側(cè)面都是正方形的棱柱一定是正棱柱.(×)(應(yīng)是各側(cè)面都是正方形的棱柱才行)

③對角面都是全等的矩形的直四棱柱一定是長方體.(×)(只能推出對角線相等,推不出底面為矩形)

④棱柱成為直棱柱的一個(gè)必要不充分條件是棱柱有一條側(cè)棱與底面的兩條邊垂直. (兩條邊可能相交,可能不相交,若兩條邊相交,則應(yīng)是充要條件)

試題詳情

2. 棱錐:棱錐是一個(gè)面為多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形.

[注]:①一個(gè)棱錐可以四各面都為直角三角形.

試題詳情

②一個(gè)棱柱可以分成等體積的三個(gè)三棱錐;所以.

⑴①正棱錐定義:底面是正多邊形;頂點(diǎn)在底面的射影為底面的中心.

[注]:i. 正四棱錐的各個(gè)側(cè)面都是全等的等腰三角形.(不是等邊三角形)

ii. 正四面體是各棱相等,而正三棱錐是底面為正△側(cè)棱與底棱不一定相等

iii. 正棱錐定義的推論:若一個(gè)棱錐的各個(gè)側(cè)面都是全等的等腰三角形(即側(cè)棱相等);底面為正多邊形.

試題詳情

②正棱錐的側(cè)面積:(底面周長為,斜高為

試題詳情

③棱錐的側(cè)面積與底面積的射影公式:(側(cè)面與底面成的二面角為

試題詳情

附:                   以知,為二面角.

試題詳情

                       則①,②,①②③得.

注:S為任意多邊形的面積(可分別多個(gè)三角形的方法).

⑵棱錐具有的性質(zhì):

①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.

⑶特殊棱錐的頂點(diǎn)在底面的射影位置:

①棱錐的側(cè)棱長均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

⑤三棱錐有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

⑦每個(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

試題詳情

⑧每個(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

試題詳情

[注]:i. 各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

ii. 若一個(gè)三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

試題詳情

簡證:AB⊥CD,AC⊥BD BC⊥AD. 令

試題詳情

,已知

試題詳情

.

iii. 空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.

iv. 若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.

試題詳情

簡證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形EFGH為長方形.若對角線等,則為正方形.

試題詳情

3. 球:⑴球的截面是一個(gè)圓面.

試題詳情

①球的表面積公式:.

試題詳情

②球的體積公式:.

⑵緯度、經(jīng)度:

試題詳情

①緯度:地球上一點(diǎn)的緯度是指經(jīng)過點(diǎn)的球半徑與赤道面所成的角的度數(shù).

試題詳情

②經(jīng)度:地球上兩點(diǎn)的經(jīng)度差,是指分別經(jīng)過這兩點(diǎn)的經(jīng)線與地軸所確定的二個(gè)半平面的二面角的度數(shù),特別地,當(dāng)經(jīng)過點(diǎn)的經(jīng)線是本初子午線時(shí),這個(gè)二面角的度數(shù)就是點(diǎn)的經(jīng)度.

試題詳情

附:①圓柱體積:為半徑,為高)

試題詳情

②圓錐體積:為半徑,為高)

試題詳情

③錐形體積:為底面積,為高)

試題詳情

4. ①內(nèi)切球:當(dāng)四面體為正四面體時(shí),設(shè)邊長為a,,

試題詳情

.

試題詳情

注:球內(nèi)切于四面體:

②外接球:球外接于正四面體,可如圖建立關(guān)系式.

六. 空間向量.

試題詳情

1. (1)共線向量:共線向量亦稱平行向量,指空間向量的有向線段所在直線互相平行或重合.

試題詳情

注:①若共線,共線,則共線.(×)  [當(dāng)時(shí),不成立]

試題詳情

②向量共面即它們所在直線共面.(×) [可能異面]

試題詳情

③若,則存在小任一實(shí)數(shù),使.(×)[與不成立]

試題詳情

④若為非零向量,則.(√)[這里用到之積仍為向量]

試題詳情

(2)共線向量定理:對空間任意兩個(gè)向量,的充要條件是存在實(shí)數(shù)(具有唯一性),使.

試題詳情

(3)共面向量:若向量使之平行于平面內(nèi),則的關(guān)系是平行,記作.

試題詳情

(4)①共面向量定理:如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對x、y使.

試題詳情

②空間任一點(diǎn)O和不共線三點(diǎn)A、B、C,則是PABC四點(diǎn)共面的充要條件.(簡證:P、A、B、C四點(diǎn)共面)

注:①②是證明四點(diǎn)共面的常用方法.

試題詳情

2. 空間向量基本定理:如果三個(gè)向量不共面,那么對空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使.

試題詳情

推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對空間任一點(diǎn)P, 都存在唯一的有序?qū)崝?shù)組x、y、z使 (這里隱含x+y+z≠1).

試題詳情

注:設(shè)四面體ABCD的三條棱,

試題詳情

中Q是△BCD的重心,則向量即證.

試題詳情

3. (1)空間向量的坐標(biāo):空間直角坐標(biāo)系的x軸是橫軸(對應(yīng)為橫坐標(biāo)),y軸是縱軸(對應(yīng)為縱軸),z軸是豎軸(對應(yīng)為豎坐標(biāo)).

試題詳情

①令=(a1,a2,a3),,則

試題詳情

              

試題詳情

(用到常用的向量模與向量之間的轉(zhuǎn)化:)

試題詳情

試題詳情

②空間兩點(diǎn)的距離公式:.

試題詳情

(2)法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果那么向量叫做平面的法向量.

(3)用向量的常用方法:

試題詳情

①利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到平面的距離為.

試題詳情

②利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補(bǔ)角大。方向相同,則為補(bǔ)角,反方,則為其夾角).

試題詳情

③證直線和平面平行定理:已知直線平面,,且CDE三點(diǎn)不共線,則a∥的充要條件是存在有序?qū)崝?shù)對使.(常設(shè)求解存在即證畢,若不存在,則直線AB與平面相交).

試題詳情

II. 競賽知識要點(diǎn)

試題詳情

一、四面體.

1. 對照平面幾何中的三角形,我們不難得到立體幾何中的四面體的類似性質(zhì):

①四面體的六條棱的垂直平分面交于一點(diǎn),這一點(diǎn)叫做此四面體的外接球的球心;

②四面體的四個(gè)面組成六個(gè)二面角的角平分面交于一點(diǎn),這一點(diǎn)叫做此四面體的內(nèi)接球的球心;

③四面體的四個(gè)面的重心與相對頂點(diǎn)的連接交于一點(diǎn),這一點(diǎn)叫做此四面體的重心,且重心將每條連線分為3┱1;

④12個(gè)面角之和為720°,每個(gè)三面角中任兩個(gè)之和大于另一個(gè)面角,且三個(gè)面角之和為180°.

試題詳情

2. 直角四面體:有一個(gè)三面角的三個(gè)面角均為直角的四面體稱為直角四面體,相當(dāng)于平面幾何的直角三角形. (在直角四面體中,記V、l、S、R、r、h分別表示其體積、六條棱長之和、表面積、外接球半徑、內(nèi)切球半徑及側(cè)面上的高),則有空間勾股定理:S2ABC+S2BCD+S2ABD=S2ACD.

試題詳情

3. 等腰四面體:對棱都相等的四面體稱為等腰四面體,好象平面幾何中的等腰三角形.根據(jù)定義不難證明以長方體的一個(gè)頂點(diǎn)的三條面對角線的端點(diǎn)為頂點(diǎn)的四面體是等腰四面體,反之也可以將一個(gè)等腰四面體拼補(bǔ)成一個(gè)長方體.

試題詳情

(在等腰四面體ABCD中,記BC = AD =a,AC = BD = b,AB = CD = c,體積為V,外接球半徑為R,內(nèi)接球半徑為r,高為h),則有

試題詳情

①等腰四面體的體積可表示為;

試題詳情

②等腰四面體的外接球半徑可表示為;

試題詳情

③等腰四面體的四條頂點(diǎn)和對面重心的連線段的長相等,且可表示為;

④h = 4r.

二、空間正余弦定理.

空間正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin∠CBD/sin∠C-BA-D

空間余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D

 

 

 

 

試題詳情


同步練習(xí)冊答案