2009年湖北省襄樊市初中畢業(yè)、升學統(tǒng)一考試
數(shù)學試卷
一、選擇題:本大題共12個小題,每小題3分,共36分。在每小題給出的四個選項中,只有一項是符號題目要求的,請將序號在答題卡上涂黑作答。
1.為數(shù)軸上表示的點,將點沿數(shù)軸向左移動個單位長度到點,則點所表示的數(shù)為( )
A. B. C. D.或
2.如下圖是由四個相同的小正方體組成的立體圖形,它的俯視圖為( )
3.通過世界各國衛(wèi)生組織的協(xié)作和努力,甲型H1N1流感疫情得到了有效的控制,到目前為止,全球感染人數(shù)約為20000人左右,占全球人口的百分比約為0.0000031,將數(shù)字0.0000031用科學記數(shù)法表示為( )
A. B. C. D.
4.如下圖,已知直線且則等于( )
A. B. C. D.
5.下列計算正確的是( )
A. B. C. D.
6.函數(shù)的自變量的取值范圍是( )
A. B. C. D.
7.分式方程的解為( )
A.1 B.
8.如下圖,在邊長為1的正方形網(wǎng)格中,將向右平移兩個單位長度得到則與點關于軸對稱的點的坐標是( )
A. B. C. D.
9.若一次函數(shù)的函數(shù)值隨的增大而減小,且圖象與軸的正半軸相交,那么對和的符號判斷正確的是( )
A. B.
C. D.
10.如下圖,是⊙O的直徑,點在的延長線上,切⊙O于若則等于( )
A. B. C. D.
11.為了改善居民住房條件,我市計劃用未來兩年的時間,將城鎮(zhèn)居民的住房面積由現(xiàn)在的人均約為提高到若每年的年增長率相同,則年增長率為( )
A. B. C. D.
12.如下圖,在□ABCD中,于且是一元二次方程的根,則□ABCD的周長為( )
A. B.
C. D.
二、填空題:本大題共5個小題,每小題3分,共15分.把答案填在答題卡的相應位置上.
13.計算: .
14.已知⊙O1和⊙O2的半徑分別為和且則⊙O1與⊙O2的位置關系為 .
15.拋物線的圖象如下圖所示,則此拋物線的解析式為 .
16.在中,為的中點,動點從點出發(fā),以每秒1的速度沿的方向運動.設運動時間為,那么當 秒時,過、兩點的直線將的周長分成兩個部分,使其中一部分是另一部分的2倍.
17.如下圖,在中,分別以、為直徑畫半圓,則圖中陰影部分的面積為 .(結果保留)
三、解答題:本大題共9個小題,共69分.解答應寫出文字說明、證明過程或演算步驟,并且寫在答題卡上每題對應的答題區(qū)域內(nèi).
18.(本小題滿分5分)
計算:
19.(本小題滿分5分)
江濤同學統(tǒng)計了他家10月份的電話清單,按通話時間畫出直方圖,從左到右分別為一、二、三、四組。如下圖所示.
(1)他家這個月總的通話次數(shù)為_________次,通話時間的中位數(shù)落在第_________組內(nèi);
(2)求通話時間不足10分鐘的通話次數(shù)占總通話次數(shù)的百分率.(結果保留兩個有效數(shù)字)
20.(本小題滿分6分)
為打擊索馬里海盜,保護各國商船的順利通行,我海軍某部奉命前往該海域執(zhí)行護航任務.某天我護航艦正在某小島北偏西并距該島海里的處待命.位于該島正西方向處的某外國商船遭到海盜襲擊,船長發(fā)現(xiàn)在其北偏東的方向有我軍護航艦(如下圖所示),便發(fā)出緊急求救信號.我護航艦接警后,立即沿航線以每小時60海里的速度前去救援.問我護航艦需多少分鐘可以到達該商船所在的位置處?(結果精確到個位.參考數(shù)據(jù):)
21.(本小題滿分6分)
實驗探究:甲、乙兩個不透明的紙盒中分別裝有形狀、大小和質(zhì)地完全相同的兩張和三張卡片.甲盒中的兩張卡片上分別標有數(shù)字1和2,乙盒中的三張卡片分別標有數(shù)字3、4、5.小紅從甲盒中隨機抽取一張卡片,并將其卡片上的數(shù)字作為十位上的數(shù)字,再從乙盒中隨機抽取一張卡片,將其卡片上的數(shù)字作為個位上的數(shù)字,從而組成一個兩位數(shù).
(1)請你畫出樹狀圖或列表,并寫出所有組成的兩位數(shù);
(2)求出所組成的兩位數(shù)是奇數(shù)的概率.
22.(本小題滿分6分)
如下圖所示,在直角坐標系中,點是反比例函數(shù)的圖象上一點,軸的正半軸于點,是的中點;一次函數(shù)的圖象經(jīng)過、兩點,并將軸于點若
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,請指出在軸的右側,當時,的取值范圍.
23.(本小題滿分8分)
如下圖所示,在中,將繞點順時針方向旋轉得到點在上,再將沿著所在直線翻轉得到連接
(1)求證:四邊形是菱形;
(2)連接并延長交于連接請問:四邊形是什么特殊平行四邊形?為什么?
24.(本小題滿分10分)
如下圖,已知:在⊙O中,直徑點是上任意一點,過作弦點是上一點,連接交于連接AC、CF、BD、OD.
(1)求證:;
(2)猜想:與的數(shù)量關系,并說明你的猜想;
(3)探究:當點位于何處時,并加以說明.
25.(本小題滿分10分)
為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣、兩類薄弱學校全部進行改造.根據(jù)預算,共需資金1575萬元.改造一所類學校和兩所類學校共需資金230萬元;改造兩所類學校和一所類學校共需資金205萬元.
(1)改造一所類學校和一所類學校所需的資金分別是多少萬元?
(2)若該縣的類學校不超過5所,則類學校至少有多少所?
(3)我市計劃今年對該縣、兩類學校共6所進行改造,改造資金由國家財政和地方財政共同承擔.若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到、兩類學校的改造資金分別為每所10萬元和15萬元。請你通過計算求出有幾種改造方案?
26.(本小題滿分13分)
如下圖,在梯形中,點是的中點,是等邊三角形.
(1)求證:梯形是等腰梯形;
(2)動點、分別在線段和上運動,且保持不變.設求與的函數(shù)關系式;
(3)在(2)中:①當動點、運動到何處時,以點、和點、、、中的兩個點為頂點的四邊形是平行四邊形?并指出符合條件的平行四邊形的個數(shù);
②當取最小值時,判斷的形狀,并說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com