題目列表(包括答案和解析)
(本小題滿分14分)
如圖,已知橢圓的左、右焦點分別為短軸兩的端點為A、B,且四邊形是邊長為2的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若C、D分別是橢圓長軸的左、右端點,動點M滿足MD連結(jié)交橢圓于點證明:為定值;
(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,說明理由.
(本題滿分14分)
如圖,已知橢圓=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
(本題滿分14分)
如圖,已知橢圓=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
(本題滿分14分)如圖,橢圓=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e= .
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F、F分別為橢圓的左、右焦點,求證: 。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com