題目列表(包括答案和解析)

 0  446858  446866  446872  446876  446882  446884  446888  446894  446896  446902  446908  446912  446914  446918  446924  446926  446932  446936  446938  446942  446944  446948  446950  446952  446953  446954  446956  446957  446958  446960  446962  446966  446968  446972  446974  446978  446984  446986  446992  446996  446998  447002  447008  447014  447016  447022  447026  447028  447034  447038  447044  447052  447348 

13. 若a、b、c、d均為實(shí)數(shù),使不等式>>0和ad<bc都成立的一組值(a、b、c、d)是   。(只要寫出適合條件的一組值即可)

試題詳情

(二)選考內(nèi)容與要求

1.幾何證明選講

 (1)了解平行線截割定理,會(huì)證直角三角形射影定理.

  (2)會(huì)證圓周角定理、圓的切線的判定定理及性質(zhì)定理.

 (3)會(huì)證相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理.

 (4)了解平行投影的含義,通過(guò)圓柱與平面的位置關(guān)系,了解平行投影;會(huì)證平面與圓柱面的截線是橢圓(特殊情形是圓).

 (5)了解下面定理:

 定理 在空間中,取直線為軸,直線相交于點(diǎn),其夾角為圍繞旋轉(zhuǎn)得到以為頂點(diǎn),為母線的圓錐面,任取平面π,若它與軸交角為(π與平行,記=0),則:

 (i)  ,平面π與圓錐的交線為橢圓;

 (ii) ,平面π與圓錐的交線為拋物線;

 (iii),平面π與圓錐的交線為雙曲線.

 (6)會(huì)利用丹迪林(Dandelin)雙球(這兩個(gè)球位于圓錐的內(nèi)部,一個(gè)位于平面π的上方,一個(gè)位于平面的下方,并且與平面π及圓錐均相切)證明上述定理(i)情況.

(7)會(huì)證明以下結(jié)果:

(i) 在(6)中,一個(gè)丹迪林球與圓錐面的交線為一個(gè)圓,并與圓錐的底面平行,記這個(gè)圓所在平面為π';

(ii)如果平面π與平面π'的交線為m,在(5)(i)中橢圓上任取一點(diǎn)A,該丹迪林球與平面π的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn)A到直線m的距離比是小于1的常數(shù)e.(稱點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線m為橢圓的準(zhǔn)線,常數(shù)e為離心率.)

 (8)了解定理(5)(iii)中的證明,了解當(dāng)無(wú)限接近時(shí),平面π的極限結(jié)果.

2.坐標(biāo)系與參數(shù)方程

 (1)坐標(biāo)系

、 理解坐標(biāo)系的作用.

、 了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.

、 能在極坐標(biāo)系中用極坐標(biāo)表示點(diǎn)的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.

 ④ 能在極坐標(biāo)系中給出簡(jiǎn)單圖形(如過(guò)極點(diǎn)的直線、過(guò)極點(diǎn)或圓心在極點(diǎn)的圓)的方程.通過(guò)比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時(shí)選擇適當(dāng)坐標(biāo)系的意義.

 ⑤ 了解柱坐標(biāo)系、球坐標(biāo)系中表示空間中點(diǎn)的位置的方法,并與空間直角坐標(biāo)系中表示點(diǎn)的位置的方法相比較,了解它們的區(qū)別.

 (2)參數(shù)方程

、 了解參數(shù)方程,了解參數(shù)的意義.

、 能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.

、 了解平擺線、漸開線的生成過(guò)程,并能推導(dǎo)出它們的參數(shù)方程.

、 了解其他擺線的生成過(guò)程,了解擺線在實(shí)際中的應(yīng)用,了解擺線在表示行星運(yùn)動(dòng)軌道中的作用. 

Ⅲ.考試形式與試卷結(jié)構(gòu)

   考試采用閉卷、筆答形式,全卷滿分150分,考試時(shí)間120分鐘.

試卷一般包括選擇題、填空題和解答題等題型.選擇題是四選一型的單項(xiàng)選擇題;填空題只要求直接寫結(jié)果,不必寫出計(jì)算過(guò)程或推證過(guò)程;解答題包括計(jì)算題、證明題和應(yīng)用題等,解答題應(yīng)寫出文字說(shuō)明、演算步驟和推證過(guò)程.

試卷包括容易題、中等題和難題,以中等題為主.

試卷包括必做試題和選做試題.

試題詳情

(一)必考內(nèi)容與要求

 1.集合

 (1)集合的含義與表示

、 了解集合的含義、元素與集合的“屬于”關(guān)系.

、 能用自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題.

 (2)集合間的基本關(guān)系

、 理解集合之間包含與相等的含義,能識(shí)別給定集合的子集.

、 在具體情境中,了解全集與空集的含義.

 (3)集合的基本運(yùn)算

、 理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集.

、 理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集.

、 能使用韋恩圖(Venn)表達(dá)集合的關(guān)系及運(yùn)算.

 2.函數(shù)概念與基本初等函數(shù)Ⅰ(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù))

 (1)函數(shù)

、 了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;了解映射的概念.

、 在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖像法、列表法、解析法)表示函數(shù).

、 了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用.

 ④ 理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義.

、 會(huì)運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì).

 (2)指數(shù)函數(shù)

、 了解指數(shù)函數(shù)模型的實(shí)際背景.

、 理解有理指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算.

 ③ 理解指數(shù)函數(shù)的概念,并理解指數(shù)函數(shù)的單調(diào)性與函數(shù)圖像通過(guò)的特殊點(diǎn).

 ④ 知道指數(shù)函數(shù)是一類重要的函數(shù)模型.

 (3)對(duì)數(shù)函數(shù)

、 理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);了解對(duì)數(shù)在簡(jiǎn)化運(yùn)算中的作用.

、 理解對(duì)數(shù)函數(shù)的概念;理解對(duì)數(shù)函數(shù)的單調(diào)性,掌握函數(shù)圖像通過(guò)的特殊點(diǎn).

③ 知道對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;

④ 了解指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù)().

 (4)冪函數(shù)

① 了解冪函數(shù)的概念.

② 結(jié)合函數(shù)的圖像,了解它們的變化情況.

 (5)函數(shù)與方程

、 結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個(gè)數(shù).

、 根據(jù)具體函數(shù)的圖像,能夠用二分法求相應(yīng)方程的近似解.

 (6)函數(shù)模型及其應(yīng)用

、 了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)的增長(zhǎng)特征.知道直線上升、指數(shù)增長(zhǎng)、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義.

、 了解函數(shù)模型(如指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.

 3.立體幾何初步

 (1)空間幾何體

、 認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).

、 能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測(cè)法畫出它們的直觀圖.

 ③ 會(huì)用平行投影與中心投影兩種方法,畫出簡(jiǎn)單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.

、 會(huì)畫某些建筑物的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求).

、 了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式).

 (2)點(diǎn)、直線、平面之間的位置關(guān)系

、 理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理.

 ◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)在此平面內(nèi).

 ◆公理2:過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

 ◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.

 ◆公理4:平行于同一條直線的兩條直線互相平行.

 ◆定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ).

、 以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定.

 理解以下判定定理.

 ◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.

 ◆如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行.

 ◆如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.

 ◆如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面互相垂直.

 理解以下性質(zhì)定理,并能夠證明.

 ◆如果一條直線與一個(gè)平面平行,經(jīng)過(guò)該直線的任一個(gè)平面與此平面相交,那么這條直線就和交線平行.

 ◆如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線相互平行.

 ◆垂直于同一個(gè)平面的兩條直線平行.

 ◆如果兩個(gè)平面垂直,那么一個(gè)平面內(nèi)垂直于它們交線的直線與另一個(gè)平面垂直.

、 能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題.

 4.平面解析幾何初步

 (1)直線與方程

 ① 在平面直角坐標(biāo)系中,結(jié)合具體圖形,確定直線位置的幾何要素.

、 理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式.

、 能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直.

、 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),了解斜截式與一次函數(shù)的關(guān)系.

、 能用解方程組的方法求兩直線的交點(diǎn)坐標(biāo).

、 掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離.

 (2)圓與方程

 ① 掌握確定圓的幾何要素,掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程.

 ② 能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個(gè)圓的方程,判斷兩圓的位置關(guān)系.

③ 能用直線和圓的方程解決一些簡(jiǎn)單的問(wèn)題.

④ 初步了解用代數(shù)方法處理幾何問(wèn)題的思想.

 (3)空間直角坐標(biāo)系

 ① 了解空間直角坐標(biāo)系,會(huì)用空間直角坐標(biāo)表示點(diǎn)的位置.

、 會(huì)推導(dǎo)空間兩點(diǎn)間的距離公式.

 5.算法初步

 (1)算法的含義、程序框圖

、 了解算法的含義,了解算法的思想.

、 理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán).

 (2)基本算法語(yǔ)句

 理解幾種基本算法語(yǔ)句――輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句的含義.

 6.統(tǒng)計(jì)

 (1)隨機(jī)抽樣

 ① 理解隨機(jī)抽樣的必要性和重要性.

、 會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法.

 (2)總體估計(jì)

、 了解分布的意義和作用,會(huì)列頻率分布表,會(huì)畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點(diǎn).

、 理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差.

 ③ 能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并作出合理的解釋.

、 會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征,理解用樣本估計(jì)總體的思想.

、 會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡(jiǎn)單的實(shí)際問(wèn)題.

 (3)變量的相關(guān)性

、 會(huì)作兩個(gè)有關(guān)聯(lián)變量數(shù)據(jù)的散點(diǎn)圖,會(huì)利用散點(diǎn)圖認(rèn)識(shí)變量間的相關(guān)關(guān)系.

、 了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程.

7.概率

(1)事件與概率

、 了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別.

② 了解兩個(gè)互斥事件的概率加法公式.

(2)古典概型

①   理解古典概型及其概率計(jì)算公式.

②   會(huì)計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率.

 (3)隨機(jī)數(shù)與幾何概型

①   了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率.

②   了解幾何概型的意義.

 8.基本初等函數(shù)Ⅱ(三角函數(shù))

 (1)任意角的概念、弧度制

① 了解任意角的概念.

② 了解弧度制概念,能進(jìn)行弧度與角度的互化.

 (2)三角函數(shù)

、 理解任意角三角函數(shù)(正弦、余弦、正切)的定義.

、 能利用單位圓中的三角函數(shù)線推導(dǎo)出,π±的正弦、余弦、正切的誘導(dǎo)公式,能畫出的圖像,了解三角函數(shù)的周期性.

、 理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]的性質(zhì)(如單調(diào)性、最大和最小值與軸交點(diǎn)等).理解正切函數(shù)在區(qū)間()的單調(diào)性.

④ 理解同角三角函數(shù)的基本關(guān)系式:

 

、 了解函數(shù)的物理意義;能畫出的圖像,了解參數(shù)對(duì)函數(shù)圖像變化的影響.

、 了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會(huì)用三角函數(shù)解決一些簡(jiǎn)單實(shí)際問(wèn)題.

 9.平面向量

 (1)平面向量的實(shí)際背景及基本概念

①   了解向量的實(shí)際背景.

②   理解平面向量的概念及向量相等的含義.

③   理解向量的幾何表示.

 (2)向量的線性運(yùn)算

、 掌握向量加法、減法的運(yùn)算,并理解其幾何意義.

② 掌握向量數(shù)乘的運(yùn)算及其意義,理解兩個(gè)向量共線的含義.

③ 了解向量線性運(yùn)算的性質(zhì)及其幾何意義.

 (3)平面向量的基本定理及坐標(biāo)表示

、 了解平面向量的基本定理及其意義.

、 掌握平面向量的正交分解及其坐標(biāo)表示.

③ 會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.

④ 理解用坐標(biāo)表示的平面向量共線的條件.

(4)平面向量的數(shù)量積

① 理解平面向量數(shù)量積的含義及其物理意義.

② 了解平面向量的數(shù)量積與向量投影的關(guān)系.

③ 掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.

④ 能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.

(5)向量的應(yīng)用

①   會(huì)用向量方法解決某些簡(jiǎn)單的平面幾何問(wèn)題.

②   會(huì)用向量方法解決簡(jiǎn)單的力學(xué)問(wèn)題與其他一些實(shí)際問(wèn)題.

10.三角恒等變換

(1)和與差的三角函數(shù)公式

、 會(huì)用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式.

② 能利用兩角差的余弦公式導(dǎo)出兩角差的正弦、正切公式.

③ 能利用兩角差的余弦公式導(dǎo)出兩角和的正弦、余弦、正切公式,導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.

(2)簡(jiǎn)單的三角恒等變換

 能運(yùn)用上述公式進(jìn)行簡(jiǎn)單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對(duì)這三組公式不要求記憶).

 11.解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題.

(2) 應(yīng)用

 能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題.

 12.?dāng)?shù)列

 (1)數(shù)列的概念和簡(jiǎn)單表示法

①   了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖像、通項(xiàng)公式).

②   了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

 (2)等差數(shù)列、等比數(shù)列

 ① 理解等差數(shù)列、等比數(shù)列的概念.

、 掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式.

、 能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.

、 了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

13.不等式

(1)不等關(guān)系

了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

 (2)一元二次不等式

、 會(huì)從實(shí)際情境中抽象出一元二次不等式模型.

、 通過(guò)函數(shù)圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

、 會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.

 (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題

 ① 會(huì)從實(shí)際情境中抽象出二元一次不等式組.

、 了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

 ③ 會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決.

 (4)基本不等式:

、 了解基本不等式的證明過(guò)程.

、 會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.

 14.常用邏輯用語(yǔ)

 (1)命題及其關(guān)系

、 了解命題及其逆命題、否命題與逆否命題.

、 理解必要條件、充分條件與充要條件的意義,會(huì)分析四種命題的相互關(guān)系.

 (2)簡(jiǎn)單的邏輯聯(lián)結(jié)詞

 了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義.

 (3)全稱量詞與存在量詞

、 理解全稱量詞與存在量詞的意義.

 ② 能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定.

 15.圓錐曲線與方程

(1)圓錐曲線

① 了解圓錐曲線的實(shí)際背景,了解在刻畫現(xiàn)實(shí)世界和解決實(shí)際問(wèn)題中的作用.

、 掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì).

、 了解雙曲線、拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡(jiǎn)單幾何性質(zhì).

 ④ 理解數(shù)形結(jié)合的思想.

、 了解圓錐曲線的簡(jiǎn)單應(yīng)用.

 16.導(dǎo)數(shù)及其應(yīng)用

 (1)導(dǎo)數(shù)概念及其幾何意義

 ① 了解導(dǎo)數(shù)概念的實(shí)際背景.

、 理解導(dǎo)數(shù)的幾何意義.

 (2)導(dǎo)數(shù)的運(yùn)算

① 能根據(jù)導(dǎo)數(shù)定義,求函數(shù)的導(dǎo)數(shù).

、 能利用表1給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).

表1:常見基本初等函數(shù)的導(dǎo)數(shù)公式和常用導(dǎo)數(shù)運(yùn)算公式:

(C為常數(shù));, n∈N+;

; ; ; ; .

法則1   

法則2   .

法則3    .

 (3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

、 了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.

② 了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次;會(huì)求閉區(qū)間上函數(shù)的最大值、最小值,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.

 (4)生活中的優(yōu)化問(wèn)題.

會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題.

17.統(tǒng)計(jì)案例

 了解下列一些常見的統(tǒng)計(jì)方法,并能應(yīng)用這些方法解決一些實(shí)際問(wèn)題.

(1)    獨(dú)立檢驗(yàn)

了解獨(dú)立性檢驗(yàn)(只要求2×2列聯(lián)表)的基本思想、方法及其簡(jiǎn)單應(yīng)用.

(2) 假設(shè)檢驗(yàn)

了解假設(shè)檢驗(yàn)的基本思想、方法及其簡(jiǎn)單應(yīng)用.

 (3) 聚類分析

了解聚類分析的基本思想、方法及其簡(jiǎn)單應(yīng)用.

(4) 回歸分析

 了解回歸的基本思想、方法及其簡(jiǎn)單應(yīng)用.

 18.推理與證明

 (1)合情推理與演繹推理

、 了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.

 ② 了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理.

 ③ 了解合情推理和演繹推理之間的聯(lián)系和差異.

 (2)直接證明與間接證明

、 了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過(guò)程、特點(diǎn).

、 了解間接證明的一種基本方法──反證法;了解反證法的思考過(guò)程、特點(diǎn).

19.?dāng)?shù)系的擴(kuò)充與復(fù)數(shù)的引入

(1)復(fù)數(shù)的概念

①   理解復(fù)數(shù)的基本概念.

②   理解復(fù)數(shù)相等的充要條件.

 ③ 了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.

(2)復(fù)數(shù)的四則運(yùn)算

①   會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算.

②   了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

 20.框圖

 (1)流程圖

、 了解程序框圖.

、 了解工序流程圖(即統(tǒng)籌圖).

 ③ 能繪制簡(jiǎn)單實(shí)際問(wèn)題的流程圖,了解流程圖在解決實(shí)際問(wèn)題中的作用.

 (2)結(jié)構(gòu)圖

①   了解結(jié)構(gòu)圖.

②   會(huì)運(yùn)用結(jié)構(gòu)圖梳理已學(xué)過(guò)的知識(shí)、整理收集到的資料信息.

試題詳情

本部分包括必考內(nèi)容和選考內(nèi)容兩部分.必考內(nèi)容為《課程標(biāo)準(zhǔn)》的必修內(nèi)容和選修系列1的內(nèi)容.選考內(nèi)容為《課程標(biāo)準(zhǔn)》的選修系列4的三個(gè)專題,這三個(gè)專題是否選考及選考專題的內(nèi)容和數(shù)量由各省區(qū)自行決定.

試題詳情

4.考查要求

數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)在各自的發(fā)展過(guò)程中的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過(guò)分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的結(jié)構(gòu)框架.

   (1)對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既要全面又要突出重點(diǎn),對(duì)于支撐學(xué)科知識(shí)體系的重點(diǎn)內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體,注重學(xué)科的內(nèi)在聯(lián)系和知識(shí)的綜合性,不刻意追求知識(shí)的覆蓋面.從學(xué)科的整體高度和思維價(jià)值的高度考慮問(wèn)題,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查達(dá)到必要的深度.

   (2)對(duì)數(shù)學(xué)思想方法的考查是對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)必須要與數(shù)學(xué)知識(shí)相結(jié)合,通過(guò)數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想方法的掌握程度.

   (3)對(duì)數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問(wèn)題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對(duì)知識(shí)的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來(lái)檢測(cè)考生將知識(shí)遷移到不同情境中去的能力,從而檢測(cè)出考生個(gè)體理性思維的廣度和深度,以及進(jìn)一步學(xué)習(xí)的潛能.

對(duì)能力的考查要全面考查能力,強(qiáng)調(diào)綜合性、應(yīng)用性,并要切合學(xué)生實(shí)際。對(duì)推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點(diǎn),強(qiáng)調(diào)其科學(xué)性、嚴(yán)謹(jǐn)性、抽象性。對(duì)空間想象能力的考查,主要體現(xiàn)在對(duì)文字語(yǔ)言、符號(hào)語(yǔ)言及圖形語(yǔ)言的互相轉(zhuǎn)化。對(duì)運(yùn)算求解能力的考查主要是算法和推理的考查,考查以代數(shù)運(yùn)算為主。數(shù)據(jù)處理能力的考查主要是運(yùn)用概率統(tǒng)計(jì)的基本方法和思想解決實(shí)際問(wèn)題的能力。

   (4)對(duì)應(yīng)用意識(shí)的考查主要采用解決應(yīng)用問(wèn)題的形式.命題時(shí)要堅(jiān)持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計(jì)要切合中學(xué)數(shù)學(xué)教學(xué)的實(shí)際,考慮學(xué)生的年齡特點(diǎn)和實(shí)踐經(jīng)驗(yàn),使數(shù)學(xué)應(yīng)用問(wèn)題的難度符合考生的水平.

   (5)對(duì)創(chuàng)新意識(shí)的考查是對(duì)高層次理性思維的考查.在考試中創(chuàng)設(shè)新穎的問(wèn)題情境,構(gòu)造有一定深度和廣度的數(shù)學(xué)問(wèn)題,要注重問(wèn)題的多樣化,體現(xiàn)思維的發(fā)散性.精心設(shè)計(jì)考查數(shù)學(xué)主體內(nèi)容,體現(xiàn)數(shù)學(xué)素質(zhì)的試題;反映數(shù)、形運(yùn)動(dòng)變化的試題;研究型、探索型、開放型的試題.

   數(shù)學(xué)科的命題,在考查基礎(chǔ)知識(shí)的基礎(chǔ)上,注重對(duì)數(shù)學(xué)思想方法的考查,注重對(duì)數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,同時(shí)兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅(jiān)持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求.

試題詳情

3.個(gè)性品質(zhì)要求

個(gè)性品質(zhì)是指考生個(gè)體的情感、態(tài)度和價(jià)值觀.具有一定的數(shù)學(xué)視野,認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義.

   要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時(shí)間,以實(shí)事求是的科學(xué)態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.

試題詳情

2.能力要求

能力是指空間想像能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識(shí)和創(chuàng)新意識(shí).

   (1)空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問(wèn)題的本質(zhì).

   空間想像能力是對(duì)空間形式的觀察、分析、抽象的能力.主要表現(xiàn)為識(shí)圖、畫圖和對(duì)圖形的想像能力.識(shí)圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語(yǔ)言和符號(hào)語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言,以及對(duì)圖形添加輔助圖形或?qū)D形進(jìn)行各種變換.對(duì)圖形的想像主要包括有圖想圖和無(wú)圖想圖兩種,是空間想像能力高層次的標(biāo)志.

   (2)抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對(duì)象的共同屬性區(qū)分出來(lái)的思維過(guò)程.抽象和概括是相互聯(lián)系的,沒(méi)有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某一觀點(diǎn)或作出某項(xiàng)結(jié)論.

   抽象概括能力就是從具體的、生動(dòng)的實(shí)例,在抽象概括的過(guò)程中,發(fā)現(xiàn)研究對(duì)象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問(wèn)題或作出新的判斷.

   (3)推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成,論證是由已有的正確的前提到被論證的結(jié)論正確的一連串的推理過(guò)程.推理既包括演繹推理,也包括合情推理.論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運(yùn)用合情推理進(jìn)行猜想,再運(yùn)用演繹推理進(jìn)行證明.

   中學(xué)數(shù)學(xué)的推理論證能力是根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題來(lái)論證某一數(shù)學(xué)命題真實(shí)性初步的推理能力.

   (4)運(yùn)算求解能力:會(huì)根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理,能根據(jù)問(wèn)題的條件,尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算.

   運(yùn)算求解能力是思維能力和運(yùn)算技能的結(jié)合.運(yùn)算包括對(duì)數(shù)字的計(jì)算、估值和近似計(jì)算,對(duì)式子的組合變形與分解變形,對(duì)幾何圖形各幾何量的計(jì)算求解等.運(yùn)算能力包括分析運(yùn)算條件、探究運(yùn)算方向、選擇運(yùn)算公式、確定運(yùn)算程序等一系列過(guò)程中的思維能力,也包括在實(shí)施運(yùn)算過(guò)程中遇到障礙而調(diào)整運(yùn)算的能力.

   (5)數(shù)據(jù)處理能力:會(huì)收集數(shù)據(jù)、整理數(shù)據(jù)、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對(duì)研究問(wèn)題有用的信息,并作出判斷.

   數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計(jì)或統(tǒng)計(jì)案例中的方法對(duì)數(shù)據(jù)進(jìn)行整理、分析,并解決給定的實(shí)際問(wèn)題.

   (6)應(yīng)用意識(shí):應(yīng)用指能綜合運(yùn)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中簡(jiǎn)單的數(shù)學(xué)問(wèn)題;能理解對(duì)問(wèn)題陳述的材料,并對(duì)所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,建立數(shù)學(xué)模型;應(yīng)用相關(guān)的數(shù)學(xué)方法解決問(wèn)題并加以驗(yàn)證,并能用數(shù)學(xué)語(yǔ)言正確地表達(dá)和說(shuō)明.主要過(guò)程是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,構(gòu)造數(shù)學(xué)模型,將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并加以解決.

   (7)創(chuàng)新意識(shí):能發(fā)現(xiàn)問(wèn)題、提出問(wèn)題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)、思想方法,選擇有效的方法和手段分析信息,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問(wèn)題的思路,創(chuàng)造性地解決問(wèn)題.

   創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn).對(duì)數(shù)學(xué)問(wèn)題的“觀察、猜測(cè)、抽象、概括、證明”,是發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的重要途徑,對(duì)數(shù)學(xué)知識(shí)的遷移、組合、融會(huì)的程度越高,顯示出的創(chuàng)新意識(shí)也就越強(qiáng).

試題詳情

1.知識(shí)要求

知識(shí)是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中所規(guī)定的必修課程、選修課程系列1和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進(jìn)行運(yùn)算,處理數(shù)據(jù)、繪制圖表等基本技能.

各部分知識(shí)整體要求及其定位參照《課程標(biāo)準(zhǔn)》相應(yīng)模塊的有關(guān)說(shuō)明.

   對(duì)知識(shí)的要求依次是了解、理解、掌握三個(gè)層次.

   (1)了解:要求對(duì)所列知識(shí)的含義有初步的、感性的認(rèn)識(shí),知道這一知識(shí)內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會(huì))在有關(guān)的問(wèn)題中識(shí)別和認(rèn)識(shí)它.

   這一層次所涉及的主要行為動(dòng)詞有:了解,知道、識(shí)別,模仿,會(huì)求、會(huì)解等.

   (2)理解:要求對(duì)所列知識(shí)內(nèi)容有較深刻的理性認(rèn)識(shí),知道知識(shí)間的邏輯關(guān)系,能夠?qū)λ兄R(shí)作正確的描述說(shuō)明,用數(shù)學(xué)語(yǔ)言表達(dá),利用所學(xué)的知識(shí)內(nèi)容對(duì)有關(guān)問(wèn)題作比較、判別、討論,有利用所學(xué)知識(shí)解決簡(jiǎn)單問(wèn)題的能力.

   這一層次所涉及的主要行為動(dòng)詞有:描述,說(shuō)明,表達(dá),推測(cè)、想像,比較、判別,初步應(yīng)用等.

   (3)掌握:要求對(duì)所列的知識(shí)內(nèi)容能夠推導(dǎo)證明,利用所學(xué)知識(shí)對(duì)問(wèn)題能夠進(jìn)行分析、研究、討論,并且加以解決.

   這一層次所涉及的主要行為動(dòng)詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運(yùn)用、解決問(wèn)題等.

試題詳情

22.(本小題滿分12分)

   已知,其中,

設(shè),.

(I) 寫出;

(II) 證明:對(duì)任意的,恒有.

[解析](I)由已知推得,從而有

(II) 證法1:當(dāng)時(shí),

當(dāng)x>0時(shí), ,所以在[0,1]上為增函數(shù)

因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)

所以對(duì)任意的

因此結(jié)論成立.

證法2: 當(dāng)時(shí),

當(dāng)x>0時(shí), ,所以在[0,1]上為增函數(shù)

因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)

所以對(duì)任意的

又因

所以

因此結(jié)論成立.

證法3: 當(dāng)時(shí),

當(dāng)x>0時(shí), ,所以在[0,1]上為增函數(shù)

因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)

所以對(duì)任意的

對(duì)上式兩邊求導(dǎo)得

因此結(jié)論成立.

[點(diǎn)評(píng)]本小題考查導(dǎo)數(shù)的基本計(jì)算,函數(shù)的性質(zhì),絕對(duì)值不等式及組合數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查歸納推理能力以及綜合運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.

試題詳情

(17) (本小題滿分12分)

已知函數(shù),.求:

(I) 函數(shù)的最大值及取得最大值的自變量的集合;

(II) 函數(shù)的單調(diào)增區(qū)間.

[解析](I) 解法一:

當(dāng),即時(shí), 取得最大值.

函數(shù)的取得最大值的自變量的集合為.

解法二:

當(dāng),即時(shí), 取得最大值.

函數(shù)的取得最大值的自變量的集合為.

(II)解:

由題意得:

即:

因此函數(shù)的單調(diào)增區(qū)間為.

[點(diǎn)評(píng)]本小題考查三角公式,三角函數(shù)的性質(zhì)及已知三角函數(shù)值求角等基礎(chǔ)知識(shí),考查綜合運(yùn)用三角有關(guān)知識(shí)的能力.

(18) (本小題滿分12分)]

已知正方形.、分別是、的中點(diǎn),將沿折起,如圖所示,記二面角的大小為.

(I) 證明平面;

(II)若為正三角形,試判斷點(diǎn)在平面內(nèi)的射影是否在直線上,證明你的結(jié)論,并求角的余弦值.

[解析](I)證明:EF分別為正方形ABCD得邊AB、CD的中點(diǎn),

EB//FD,且EB=FD,

四邊形EBFD為平行四邊形.

BF//ED

平面.

(II)解法1:

如右圖,點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上,

過(guò)點(diǎn)A作AG垂直于平面BCDE,垂足為G,連結(jié)GC,GD.

ACD為正三角形,

AC=AD

CG=GD

G在CD的垂直平分線上,

點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上,

過(guò)G作GH垂直于ED于H,連結(jié)AH,則,所以為二面角A-DE-C的平面角.即

設(shè)原正方體的邊長(zhǎng)為2a,連結(jié)AF

在折后圖的AEF中,AF=,EF=2AE=2a,

AEF為直角三角形,

在RtADE中,

.

解法2:點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上

連結(jié)AF,在平面AEF內(nèi)過(guò)點(diǎn)作,垂足為.

ACD為正三角形,F為CD的中點(diǎn),

又因,

所以

為A在平面BCDE內(nèi)的射影G.

即點(diǎn)A在平面BCDE內(nèi)的射影在直線EF上

過(guò)G作GH垂直于ED于H,連結(jié)AH,則,所以為二面角A-DE-C的平面角.即

設(shè)原正方體的邊長(zhǎng)為2a,連結(jié)AF

在折后圖的AEF中,AF=,EF=2AE=2a,

AEF為直角三角形,

在RtADE中,

.

解法3: 點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上

連結(jié)AF,在平面AEF內(nèi)過(guò)點(diǎn)作,垂足為.

ACD為正三角形,F為CD的中點(diǎn),

又因,

所以

為A在平面BCDE內(nèi)的射影G.

即點(diǎn)A在平面BCDE內(nèi)的射影在直線EF上

過(guò)G作GH垂直于ED于H,連結(jié)AH,則,所以為二面角A-DE-C的平面角.即

設(shè)原正方體的邊長(zhǎng)為2a,連結(jié)AF

在折后圖的AEF中,AF=,EF=2AE=2a,

AEF為直角三角形,

在RtADE中,

,

.

[點(diǎn)評(píng)]本小題考查空間中的線面關(guān)系,解三角形等基礎(chǔ)知識(shí)考查空間想象能力和思維能力.

(19) (本小題滿分12分)

現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目每投資十萬(wàn)元,一年后利潤(rùn)是1.2萬(wàn)元、1.18萬(wàn)元、1.17萬(wàn)元的概率分別為、;已知乙項(xiàng)目的利潤(rùn)與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是,設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為,對(duì)乙項(xiàng)目每投資十萬(wàn)元, 取0、1、2時(shí), 一年后相應(yīng)利潤(rùn)是1.3萬(wàn)元、1.25萬(wàn)元、0.2萬(wàn)元.隨機(jī)變量分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬(wàn)元一年后的利潤(rùn).

(I)  求的概率分布和數(shù)學(xué)期望、;

(II)  當(dāng)時(shí),求的取值范圍.

[解析]

(I)解法1: 的概率分布為


1.2
1.18
1.17
P



E=1.2+1.18+1.17=1.18.

由題設(shè)得,則的概率分布為


0
1
2
P



的概率分布為


1.3
1.25
0.2
P



所以的數(shù)學(xué)期望為

E=++=.

解法2: 的概率分布為


1.2
1.18
1.17
P



E=1.2+1.18+1.17=1.18.

設(shè)表示事件”第i次調(diào)整,價(jià)格下降”(i=1,2),則

P(=0)= ;

P(=1)=;

P(=2)=

的概率分布為


1.3
1.25
0.2
P



所以的數(shù)學(xué)期望為

E=++=.

(II)  由,得:

因0<p<1,所以時(shí),p的取值范圍是0<p<0.3.

[點(diǎn)評(píng)]本小題考查二項(xiàng)分布、分布列、數(shù)學(xué)期望、方差等基礎(chǔ)知識(shí),考查同學(xué)們運(yùn)用概率知識(shí)解決實(shí)際問(wèn)題的能力.

(20) (本小題滿分14分)

已知點(diǎn),是拋物線上的兩個(gè)動(dòng)點(diǎn),是坐標(biāo)原點(diǎn),向量,滿足.設(shè)圓的方程為

(I) 證明線段是圓的直徑;

(II)當(dāng)圓C的圓心到直線X-2Y=0的距離的最小值為時(shí),求p的值。

[解析](I)證明1:

整理得:

設(shè)M(x,y)是以線段AB為直徑的圓上的任意一點(diǎn),則

整理得:

故線段是圓的直徑

證明2:

整理得:

……..(1)

設(shè)(x,y)是以線段AB為直徑的圓上則

去分母得:

點(diǎn)滿足上方程,展開并將(1)代入得:

故線段是圓的直徑

證明3:

整理得:

……(1)

以線段AB為直徑的圓的方程為

展開并將(1)代入得:

故線段是圓的直徑

(II)解法1:設(shè)圓C的圓心為C(x,y),則

又因

所以圓心的軌跡方程為

設(shè)圓心C到直線x-2y=0的距離為d,則

當(dāng)y=p時(shí),d有最小值,由題設(shè)得

.

解法2: 設(shè)圓C的圓心為C(x,y),則

又因

所以圓心的軌跡方程為

設(shè)直線x-2y+m=0到直線x-2y=0的距離為,則

因?yàn)閤-2y+2=0與無(wú)公共點(diǎn),

所以當(dāng)x-2y-2=0與僅有一個(gè)公共點(diǎn)時(shí),該點(diǎn)到直線x-2y=0的距離最小值為

將(2)代入(3)得

解法3: 設(shè)圓C的圓心為C(x,y),則

圓心C到直線x-2y=0的距離為d,則

又因

當(dāng)時(shí),d有最小值,由題設(shè)得

.

[點(diǎn)評(píng)]本小題考查了平面向量的基本運(yùn)算,圓與拋物線的方程.點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),以及綜合運(yùn)用解析幾何知識(shí)解決問(wèn)題的能力.

21.(本小題滿分12分)

已知函數(shù)f(x)=,其中a , b , c是以d為公差的等差數(shù)列,,且a>0,d>0.設(shè)[1-]上,,在,將點(diǎn)A, B, C

  (I)求

(II)若⊿ABC有一邊平行于x軸,且面積為,求a ,d的值

[解析](I)解:

,得

當(dāng)時(shí), ;

當(dāng)時(shí),

所以f(x)在x=-1處取得最小值即

(II)

的圖像的開口向上,對(duì)稱軸方程為

上的最大值為

又由

當(dāng)時(shí), 取得最小值為

由三角形ABC有一條邊平行于x軸知AC平行于x軸,所以

又由三角形ABC的面積為

利用b=a+d,c=a+2d,得

聯(lián)立(1)(2)可得.

解法2:

又c>0知上的最大值為

即:

又由

當(dāng)時(shí), 取得最小值為

由三角形ABC有一條邊平行于x軸知AC平行于x軸,所以

又由三角形ABC的面積為

利用b=a+d,c=a+2d,得

聯(lián)立(1)(2)可得

[點(diǎn)評(píng)]本小題考查了函數(shù)的導(dǎo)數(shù),函數(shù)的極值的判定,閉區(qū)間上二次函數(shù)的最值,等差數(shù)基礎(chǔ)知識(shí)的綜合應(yīng)用,考查了應(yīng)用數(shù)形結(jié)合的數(shù)學(xué)思想分析問(wèn)題解決問(wèn)題的能力

試題詳情


同步練習(xí)冊(cè)答案