題目列表(包括答案和解析)
(本題滿分12分)
已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
1.(1)填空:菱形ABCD的邊長(zhǎng)是 ▲ 、面積是 ▲ 、 高BE的長(zhǎng)是 ▲ ;
2.(2)探究下列問(wèn)題:
若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上時(shí)
② △APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
3.(3)在運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說(shuō)明理由.
(本題滿分10分)
已知:如圖,矩形DEFG的一邊DE在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,AH是邊BC上的高,AH與GF相交于點(diǎn)K,已知BC=12,AH=6,EF∶GF=1∶2,求矩形DEFG的周長(zhǎng).
(本題滿分7分)如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)
的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.
求:(1)一次函數(shù)的解析式;
(2)△ABC的面積.
(本題滿分12分)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF= 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)當(dāng)t為何值時(shí),△PQE是直角三角形?
(3)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最小?若存在,求出y的最小值;若不存在,說(shuō)明理由.
(4)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由
(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。
求證:(1)△ADF≌△CBE;(2)EB∥DF。
一.選擇題:(本大題共15個(gè)題;每小題3分,共45分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
答案
B
C
A
C
D
A
B
A
D
B
A
B
D
A
A
二.填空題:(本大題共5小題;每小題3分,共15分。)
16.4 17. 36 ; 18. 20000; 19.
20.109
三.解答題:(本大題共6小題,共40分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。)
21.
解:(1)原式 ---1分
---2分
---3分
(2)
解:去分母得2x-5=3(2x-1)
即2x-5=6x-3---1分
∴4x=-2
x= ---2分
當(dāng)x=時(shí),2x-1≠0
所以x=是原方程的解---3分
22.(本題6分)
(1) C ---2分
(2)沒有考慮---4分
(3) ---6分
23.(本題7分)
解(1)當(dāng)x30時(shí),設(shè)函數(shù)關(guān)系式為y=kx+b
則-------2分
解得
所以y=3x-30-------4分
(2)4月份上網(wǎng)20小時(shí),應(yīng)付上網(wǎng)費(fèi)60元-------5分
(3) 由75=3x-30解得x=35,所以5月份上網(wǎng)35個(gè)小時(shí). -------7分
24.(本題7分)
解:⑴設(shè)藍(lán)球個(gè)數(shù)為個(gè) -------1分
則由題意得 -------2分
答:藍(lán)球有1個(gè) --------3分
--------4分
---------5分
∴ 兩次摸到都是白球的概率 =
= ----------7分
25.(本題6分)
證明:(1)∵AE=CF
∴AE+EF=CF+FE即AF=CE --------- 1分
又ABCD是平行四邊形,∴AD=CB,AD∥BC
∴∠DAF=∠BCE ---------2分
在△ADF與△CBE中
---------3分
∴△ADF≌△CBE(SAS)---------4分
(2)∵△ADF≌△CBE
∴∠DFA=∠BEC ---------5分
∴DF∥EB---------6分
26.(本題8分)
(1)由已知可得∠A,OE=60o , A,E=AE
由A′E//軸,得△OA,E是直角三角形,
設(shè)A,的坐標(biāo)為(0,b)
AE=A,E=,OE=2b
所以b=1,A,、E的坐標(biāo)分別是(0,1)與(,1) --------3分
(2) 因?yàn)锳,、E在拋物線上,所以
所以,函數(shù)關(guān)系式為
由得
與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別是(,0)與(,0)--------6分
(3) 不可能使△A′EF成為直角三角形。
∵∠FA,E=∠FAE=60o,若△A′EF成為直角三角形,只能是∠A,EF=90o或∠A,FE=90o
若∠A,EF=90o,利用對(duì)稱性,則∠AEF=90o, A,、E、A三點(diǎn)共線,O與A重合,與已知矛盾;
同理若∠A,FE=90o也不可能
所以不能使△A′EF成為直角三角形。--------8分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com