題目列表(包括答案和解析)
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
(本小題滿分12分)
已知橢圓C1和拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點,從它們每條曲線上至少取兩個點,將其坐標記錄于下表中:
x |
5 |
- |
4 |
||
y |
2 |
0 |
-4 |
- |
(Ⅰ)求C1和C2的方程;
(Ⅱ)過點S(0,-)且斜率為k的動直線l交橢圓C1于A、B兩點,在y軸上是否存在定點D,使以線段AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.
(本小題滿分12分)
已知橢圓的左、右兩個焦點分別為F1、F2,離心率為,且拋物線與橢圓C1有公共焦點F2(1,0)。
(1)求橢圓和拋物線的方程;
(2)設A、B為橢圓上的兩個動點,,過原點O作直線AB的垂線OD,垂足為D,求點D為軌跡方程。
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com