(2)設.并且時.恒成立.求實數(shù)的取值范圍.并判斷函數(shù)能否成為上的凸函數(shù), 查看更多

 

題目列表(包括答案和解析)

(是自然對數(shù)的底數(shù),),且
(1)求實數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設,對任意,恒有成立.求實數(shù)的取值范圍;
(3)若正實數(shù)滿足,,試證明:;并進一步判斷:當正實數(shù)滿足,且是互不相等的實數(shù)時,不等式是否仍然成立.

查看答案和解析>>

(是自然對數(shù)的底數(shù),),且
(1)求實數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設,對任意,恒有成立.求實數(shù)的取值范圍;
(3)若正實數(shù)滿足,試證明:;并進一步判斷:當正實數(shù)滿足,且是互不相等的實數(shù)時,不等式是否仍然成立.

查看答案和解析>>

設函數(shù)
(1)求函數(shù)y=T(x2)和y=(T(x))2的解析式;
(2)是否存在實數(shù)a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,請說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當時,求y=T4(x)的解析式;
已知下面正確的命題:當時(i∈N*,1≤i≤15),都有恒成立.
②若方程T4(x)=kx恰有15個不同的實數(shù)根,確定k的取值;并求這15個不同的實數(shù)根的和.

查看答案和解析>>

已知函數(shù),且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設點P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標;
(3)當x∈[1,2]時,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

已知函數(shù),且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設點P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標;
(3)當x∈[1,2]時,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

一.選擇題:

題號

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空題:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答題:

15.解: ;  ………5分

方程有非正實數(shù)根

 

綜上: ……………………12分16.解:(I)設袋中原有個白球,由題意知

可得(舍去)

答:袋中原有3個白球. 。。。。。。。。4分

(II)由題意,的可能取值為1,2,3,4,5

 

所以的分布列為:

1

2

3

4

5

。。。。。。。。。9分

(III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

答:甲取到白球的概率為.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且設,則:

>0,

在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分

(3)當直線∈R)與的圖象無公共點時,=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)證明:∵底面,底面, ∴

   又∵平面,平面,,

    ∴平面3分

(Ⅱ)解:∵點分別是的中點,

,由(Ⅰ)知平面,

平面,

,

為二面角的平面角,

底面,∴與底面所成的角即為,

,∵為直角三角形斜邊的中點,

為等腰三角形,且,∴

(Ⅲ)過點于點,∵底面,

   ∴底面,為直線在底面上的射影,

   要,由三垂線定理的逆定理有要 ,

 設,則由,

 又∴在直角三角形中,

,

∵ ,

在直角三角形中,,

 ,即時,

(Ⅲ)以點為坐標原點,建立如圖的直角坐標系,設,則,,設,則

,,

,時時,.

 

 

19  證明:(1)對任意x1, x2∈R, 當 a0,

=                         =……(3分)

∴當時,,即

  當時,函數(shù)f(x)是凸函數(shù).   ……(4分)

 (2) 當x=0時, 對于a∈R,有f(x)≤1恒成立;當x∈(0, 1]時, 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

由此可知,滿足條件的實數(shù)a的取值恒為負數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

(3)令,∵,∴,……………..(11)分

,則,故;

,則

;,……………..(12)分

,則;∴時,.

綜上所述,對任意的,都有;……………..(13)分

所以,不是R上的凸函數(shù). ……………..(14)分

對任意,有,

所以,不是上的凸函數(shù). ……………..(14)分

20. 解:(1)設數(shù)列的前項和為,則

……….4分

(2)為偶數(shù)時,

為奇數(shù)時,

………9分

(3)方法1、因為所以

,時,,

又由,兩式相減得

 所以若,則有………..14分

方法2、由,兩式相減得

………..11分

所以要證明,只要證明

或①由:

所以…………………14分

或②由:

…………………14分

數(shù)學歸納法:①當

②當

綜上①②知若,則有.

所以,若,則有.。。。。。。。。。14分

 

 


同步練習冊答案