即由可推出a1,a2,-,ak+1成等差數(shù)列. 查看更多

 

題目列表(包括答案和解析)

由以下條件分別給出數(shù)列{an}:
(1){3 an}是等比數(shù)列;(2)前n項(xiàng)和Sn=n2+2;
(3)a1>0,且ak=
2k-1
(a1+a2+…+ak-1)(k≥2);(4)2an+1=an+an-1(n≥2);
以上能使{an}成等差數(shù)列的條件的序號(hào)是
(1),(3)
(1),(3)

查看答案和解析>>

用數(shù)學(xué)歸納法證明1+a+a2+…+an+1= (nN*,a≠1)時(shí),在驗(yàn)證n=1成立時(shí),左邊應(yīng)為某學(xué)生在證明等差數(shù)列前n項(xiàng)和公式時(shí),證法如下:

(1)當(dāng)n=1時(shí),S1=a1顯然成立;

(2)假設(shè)當(dāng)n=k時(shí),公式成立,即Sk=ka1+,

當(dāng)n=k+1時(shí),Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d

n=k+1時(shí)公式成立.

由(1)(2)知,對(duì)nN*時(shí),公式都成立.

以上證明錯(cuò)誤的是(  )

A.當(dāng)n取第一個(gè)值1時(shí),證明不對(duì)

B.歸納假設(shè)的寫(xiě)法不對(duì)

C.從n=kn=k+1時(shí)的推理中未用歸納假設(shè)

D.從n=kn=k+1時(shí)的推理有錯(cuò)誤

查看答案和解析>>

某學(xué)生在證明等差數(shù)列前n項(xiàng)和公式時(shí),證法如下:

(1)當(dāng)n=1時(shí),S1=a1顯然成立.

(2)假設(shè)n=k時(shí),公式成立,即

Sk=ka1+,

當(dāng)n=k+1時(shí),

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+d

=(k+1)a1+d.

∴n=k+1時(shí)公式成立.

∴由(1)(2)可知對(duì)n∈N+,公式成立.

以上證明錯(cuò)誤的是(    )

A.當(dāng)n取第一個(gè)值1時(shí),證明不對(duì)

B.歸納假設(shè)寫(xiě)法不對(duì)

C.從n=k到n=k+1的推理中未用歸納假設(shè)

D.從n=k到n=k+1的推理有錯(cuò)誤

查看答案和解析>>

已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)當(dāng)k=5,M=100時(shí),對(duì)給定的首項(xiàng),若由已知條件該數(shù)列被唯一確定,求數(shù)列{an}的通項(xiàng)公式;
(3)記Sk=a1+a2+…+ak,對(duì)于確定的常數(shù)d,當(dāng)Sk取到最大值時(shí),求數(shù)列{an}的首項(xiàng).

查看答案和解析>>

設(shè)Tn為數(shù)列{an}的前n項(xiàng)的積,即Tn=a1•a2…an
(1)若Tn=n2,求a3a4a5的值;
(2)若數(shù)列{an}各項(xiàng)都是正數(shù),且滿足Tn=
a
2
n
4
((n∈N*),證明數(shù)列{log2an}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(3)數(shù)列{an}共有100項(xiàng),且滿足以下條件:①a1•a2…a100=2;②等式a1•a2…ak+ak+1•ak+2…a100=k+2對(duì)1≤k≤99,k∈N*恒成立.試問(wèn)符合條件的數(shù)列共有多少個(gè)?為什么?

查看答案和解析>>


同步練習(xí)冊(cè)答案