. ② 由①式得 . ③將③式代入②式.整理得.故 . 由題設得..解得.所以雙曲線的離心率的取值范圍為. 查看更多

 

題目列表(包括答案和解析)

已知是公差為d的等差數列,是公比為q的等比數列

(Ⅰ)若 ,是否存在,有?請說明理由;

(Ⅱ)若(a、q為常數,且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數列中存在某個連續(xù)p項的和式數列中的一項,請證明.

【解析】第一問中,由,整理后,可得、為整數不存在、,使等式成立。

(2)中當時,則

,其中是大于等于的整數

反之當時,其中是大于等于的整數,則,

顯然,其中

、滿足的充要條件是,其中是大于等于的整數

(3)中設為偶數時,式左邊為偶數,右邊為奇數,

為偶數時,式不成立。由式得,整理

時,符合題意。當為奇數時,

結合二項式定理得到結論。

解(1)由,整理后,可得,為整數不存在、,使等式成立。

(2)當時,則,其中是大于等于的整數反之當時,其中是大于等于的整數,則

顯然,其中

滿足的充要條件是,其中是大于等于的整數

(3)設為偶數時,式左邊為偶數,右邊為奇數,

為偶數時,式不成立。由式得,整理

時,符合題意。當,為奇數時,

   由,得

為奇數時,此時,一定有使上式一定成立。為奇數時,命題都成立

 

查看答案和解析>>

拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例.推廣的命題為
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程

(2)平面幾何中有正確命題:“正三角形內任意一點到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題:
正四面體內任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3
正四面體內任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3

查看答案和解析>>

下面四個命題:
①將一組數據中的每個數據都加上或減去同一個常數后,方差恒不變;
②若命題P:所有能被3整除的整數都是奇數,則P:存在能被3整除的數不是奇數;
③將函數y=sin(2x-
π
6
)的圖象向右平移
π
6
個單位,所得圖象對應的函數解析式為y=-cos2x;
④在一個2×2列聯表中,由計算得K2=13,079,則其兩個變量有關系的可能性是90%.
P(K2≥k0 0.15 0.10 0.05 0.025 0.01 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
其中所有正確的命題序號是
 

查看答案和解析>>

(2001•上海)已知兩個圓:x2+y2=1 ①;x2+(y-3)2=1 ②,則由①式減去②式可得上述兩個圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例,推廣的命題為
設圓方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
由①-②,得兩圓的對稱軸方程
設圓方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
由①-②,得兩圓的對稱軸方程

查看答案和解析>>

已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例.推廣命題為______________________.

查看答案和解析>>


同步練習冊答案