(3)設(shè)cn= Sn+nan.Tn為數(shù)列{cn}的前n項(xiàng)和.求證:Tn<1. 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=a,且an+1=2Sn+1,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)a的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)不為0的數(shù)列{cn}中,所有滿(mǎn)足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令cn=
bn-4bn
(n∈N*)
,在(2)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿(mǎn)足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令數(shù)學(xué)公式(n∈N*),在(2)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿(mǎn)足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令cn=
bn-4
bn
(n∈N*),在(2)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=a,且an+1=2Sn+1,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)a的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)不為0的數(shù)列{cn}中,所有滿(mǎn)足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令cn=
bn-4
bn
(n∈N*)
,在(2)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)在直線y=2x+1上,。
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿(mǎn)足的整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的”,令),在(2)的條件下,求數(shù)列的“積異號(hào)數(shù)”。

查看答案和解析>>


同步練習(xí)冊(cè)答案