題目列表(包括答案和解析)
2 |
已知斜三棱柱,,,在底面上的射影恰為的中點(diǎn),又知.
(Ⅰ)求證:平面;
(Ⅱ)求到平面的距離;
(Ⅲ)求二面角的大小。
(本題滿分12分)已知斜三棱柱的底面是直角三角形,,側(cè)棱與底面所成角為,點(diǎn)在底面上射影D落在BC上.
(Ⅰ)求證:平面;
(Ⅱ)若點(diǎn)D恰為BC中點(diǎn),且,求的大;
(III)若,且當(dāng)時,求二面角的大。
(本小題滿分12分)
在長方體中,點(diǎn)是上的動點(diǎn),點(diǎn)為的中點(diǎn).
(1)當(dāng)點(diǎn)在何處時,直線//平面,并證明你的結(jié)論;
(2)在(Ⅰ)成立的條件下,求二面角的大小.
(本小題滿分14分)
如圖所示的長方體中,底面是邊長為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。
一.選擇
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
B
B
A
C
A
D
B
C
B
A
B
二.填空
13. 14. 0 15.100 16. ②③④
三。解答題
17.(滿分10分)
(1) ,∴,∴
(5分)
(2)
,∴f(x)的值域?yàn)?sub> (10分)
18.解:(1)拿每個球的概率均為,兩球標(biāo)號的和是3的倍數(shù)有下列4種情況:
(1,2),(1,5),(2,4),(3,6)每種情況的概率為:
所以所求概率為: (6分)
(2)設(shè)拿出球的號碼是3的倍數(shù)的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。
,, (12分)
19 (滿分12分)
解法一:(Ⅰ)取BC中點(diǎn)O,連結(jié)AO.
為正三角形,.……3分
連結(jié),在正方形中,分別為的中點(diǎn),
由正方形性質(zhì)知,.………5分
又在正方形中,,
平面.……6分
(Ⅱ)設(shè)AB1與A1B交于點(diǎn),在平面1BD中,
作于,連結(jié),由(Ⅰ)得.
為二面角的平面角.………9分
在中,由等面積法可求得,………10分
又,.
所以二面角的大小為.……12分
解法二:(Ⅰ)取中點(diǎn),連結(jié).取中點(diǎn),以為原點(diǎn),如圖建立空間直角坐標(biāo)系,則
……3分
,.
平面.………6分
(Ⅱ)設(shè)平面的法向量為..
令得為平面的一個法向量.……9分
由(Ⅰ)為平面的法向量.……10分
.
所以二面角的大小為.……12分
20.(滿分12分)解:(I),
① …2分
,
又
即, ② …4分
③ … 6分
聯(lián)立方程①②③,解得 … 7分
(II)
… 9分
令
x
(-∞,-3)
-3
(-3,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
極大
極小
故h(x)的單調(diào)增區(qū)間為(-∞,-3),(1,+∞),單調(diào)減區(qū)間為(-3,1)
21.(滿分12分)
解:(1)∵,∴.
∴().
∴().
∴().
∴(). …3分
∴數(shù)列等比,公比,首項(xiàng),
而,且,∴.
∴.
∴. …6分
(2)
.
, ①
∴2. ②
①-②得 -,
, …9分
∴. …12分
22.(滿分12分)
解:⑴設(shè)Q(x0,0),由F(-c,0)
A(0,b)知
…2分
設(shè),得 …4分
因?yàn)辄c(diǎn)P在橢圓上,所以 …6分
整理得2b2=
⑵由⑴知,
于是F(-a,0), Q
△AQF的外接圓圓心為(a,0),半徑r=|FQ|=a …10分
所以,解得a=2,∴c=1,b=,所求橢圓方程為 …12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com