題目列表(包括答案和解析)
已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。
(I)求曲線的方程;
(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分
【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,
∴,曲線的方程為
第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為, ………………3分
代入曲線的方程,可得
∵,∴
確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).
然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,
要使被軸平分,只要得到。
(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,
∴,曲線的方程為. ………………2分
(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為, ………………3分
代入曲線的方程,可得 ,……5分
∵,∴,
∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn),的坐標(biāo)分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點(diǎn),使得總能被軸平分
如圖是單位圓上的點(diǎn),分別是圓與軸的兩交點(diǎn),為正三角形.
(1)若點(diǎn)坐標(biāo)為,求的值;
(2)若,四邊形的周長(zhǎng)為,試將表示成的函數(shù),并求出的最大值.
【解析】第一問利用設(shè)
∵ A點(diǎn)坐標(biāo)為∴ ,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴ ,
∴ 當(dāng)時(shí),即 當(dāng) 時(shí) , y有最大值5. .
某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) |
2 |
3 |
4 |
5 |
加工的時(shí)間y(小時(shí)) |
2.5 |
3 |
4 |
4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?
(注:)
【解析】第一問中利用數(shù)據(jù)描繪出散點(diǎn)圖即可
第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。
第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時(shí))得到結(jié)論。
(1)散點(diǎn)圖如下圖.
………………4分
(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,
∴=…=0.7,=…=1.05.
∴=0.7x+1.05.回歸直線如圖中所示.………………8分
(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時(shí)),
∴預(yù)測(cè)加工10個(gè)零件需要8.05小時(shí)
1 | 4 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com