題目列表(包括答案和解析)
(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時(shí)x的值. 列表如下, 請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
(本題滿分15分)由于衛(wèi)生的要求游泳池要經(jīng)常換水(進(jìn)一些干凈的水同時(shí)放掉一些臟水), 游泳池的水深經(jīng)常變化,已知泰州某浴場(chǎng)的水深(米)是時(shí)間,(單位小時(shí))的函數(shù),記作,下表是某日各時(shí)的水深數(shù)據(jù)
t(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
經(jīng)長(zhǎng)期觀測(cè)的曲線可近似地看成函數(shù)
(Ⅰ)根據(jù)以上數(shù)據(jù),求出函數(shù)的最小正周期T,振幅A及函數(shù)表達(dá)式;
(Ⅱ)依據(jù)規(guī)定,當(dāng)水深大于2米時(shí)才對(duì)游泳愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8 00至晚上20 00之間,有多少時(shí)間可供游泳愛好者進(jìn)行運(yùn)動(dòng)
(本小題滿分12分)
已知點(diǎn),過點(diǎn)作拋物線的切線,切點(diǎn)在第二象限,如圖.
(Ⅰ)求切點(diǎn)的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓 恰好經(jīng)過切點(diǎn),設(shè)切線交橢圓的另一點(diǎn)為,記切線的斜率分別為,若,求橢圓方程.
21(本小題滿分12分)
已知函數(shù) .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
22.選修4-1:幾何證明選講
如圖,是圓的直徑,是弦,的平分線交圓于點(diǎn),,交的延長(zhǎng)線于點(diǎn),交于點(diǎn)。
(1)求證:是圓的切線;
(2)若,求的值。
23.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn);
(1)若,求直線的傾斜角的取值范圍;
(2)求弦最短時(shí)直線的參數(shù)方程。
24. 選修4-5 不等式選講
已知函數(shù)
(I)試求的值域;
(II)設(shè),若對(duì),恒有成立,試求實(shí)數(shù)a的取值范圍。
(21) (本小題滿分12分)
已知函數(shù)的圖象過點(diǎn)(-1,-6),且函數(shù)的圖象關(guān)于y軸對(duì)稱.
(Ⅰ)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.
一.選擇題:
1
2
3
4
5
6
7
8
9
10
11
12
B
D
A
D
C
D
A
C
B
A
C
B
二.填空題:
13. 7 ;14.;15. ;16①②③④
三.解答題:
18. 記第一、二、三次射擊命中目標(biāo)分別為事件A,B,C三次均未命中目標(biāo)的事件為D.依題意. 設(shè)在處擊中目標(biāo)的概率為,則,由
時(shí),所以,, 2分 ,
,,.
5 分
(Ⅰ)由于各次射擊都是獨(dú)立的,所以該射手在三次射擊擊中目標(biāo)的概率為
,
=. 8分
(Ⅱ)依題意,設(shè)射手甲得分為,則,,
,,所以的分布列為
0
1
2
3
所以。 12分
20. (Ⅰ)證明:連結(jié)交于點(diǎn),連結(jié).
在正三棱柱中,四邊形是平行四邊形,
∴.
∵,
∴∥. ………………………2分
∵平面,平面,
∴∥平面. …………………………4分
(Ⅱ)過點(diǎn)作交于,過點(diǎn)作交于,連結(jié).
∵平面平面,平面,平面平面,
∴平面.
∴是在平面內(nèi)的射影.
∴.
∴是二面角的平面角.
在直角三角形中,.
同理可求: .
∴.
∵,
∴. …………………………12分
21.(Ⅰ),令,解得或,1分
當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí),為減函數(shù);當(dāng)時(shí),為增函數(shù)。4分 當(dāng)時(shí),取得極大值為-4,當(dāng)時(shí),取處極小值為!6分
(Ⅱ)設(shè),在上恒成立.
,,若,顯然。 8分 若,
,令,解得,或,當(dāng)時(shí),
,當(dāng)時(shí),.10分
當(dāng)時(shí),.
即,解不等式得,,當(dāng)時(shí),
滿足題意.綜上所述的范圍為…………...12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com