所以直線與平面所成角的正弦值為----------12分 查看更多

 

題目列表(包括答案和解析)

如圖所示,ABCD是邊長為a的正方形,△PBA是以角B為直角的等腰三角形,H為BD上一點,且AH⊥平面PDB.
(Ⅰ)求證:平面ABCD⊥平面APB;
(Ⅱ)求直線PC與平面PDB所成角的余弦值.

查看答案和解析>>

如圖所示,ABCD是邊長為a的正方形,△PBA是以角B為直角的等腰三角形,H為BD上一點,且AH⊥平面PDB.
(Ⅰ)求證:平面ABCD⊥平面APB;
(Ⅱ)求直線PC與平面PDB所成角的余弦值.

查看答案和解析>>

如圖,四棱柱中,平面,底面是邊長為的正方形,側棱

 (1)求三棱錐的體積;

 (2)求直線與平面所成角的正弦值;

 (3)若棱上存在一點,使得,當二面角的大小為時,求實數(shù)的值.

【解析】(1)在中,

.                 (3’)

(2)以點D為坐標原點,建立如圖所示的空間直角坐標系,則

       (4’)

,設平面的法向量為

,                                             (5’)

,

.  (7’)

(3)

設平面的法向量為,由,      (10’)

 

查看答案和解析>>

已知正△ABC的頂點A在平面α上,頂點B,C在平面α的同一側,D為BC的中點,若△ABC在平面α上的射影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的范圍是(  )
A、[
6
3
,1)
B、[
6
3
,
3
2
)
C、[
1
2
,
3
2
)
D、(
1
2
6
3
]

查看答案和解析>>

已知正△ABC的頂點A在平面α內,頂點B,C在平面α的同一側,D為BC的中點,若△ABC在平面α內的射影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的最小值為
6
3
6
3

查看答案和解析>>


同步練習冊答案