(2)當(dāng)時.設(shè)動點Q關(guān)于x軸的對稱點為點P.直線PD交軌跡E于點F.證明:直線QF與x軸交于定點.并求定點坐標. 查看更多

 

題目列表(包括答案和解析)

已知圓,坐標原點為O.圓C上任意一點A在x軸上的射影為點B,已知向量.

   (1)求動點Q的軌跡E的方程;

   (2)當(dāng)時,設(shè)動點Q關(guān)于x軸的對稱點為點P,直線PD交軌跡E于點F(異于P點),證明:直線QF與x軸交于定點,并求定點坐標.

查看答案和解析>>

已知圓,坐標原點為O.圓C上任意一點A在x軸上的射影為點B,已知向量.
(1)求動點Q的軌跡E的方程;
(2)當(dāng)時,設(shè)動點Q關(guān)于x軸的對稱點為點P,直線PD交軌跡E于點F(異于P點),證明:直線QF與x軸交于定點,并求定點坐標.

查看答案和解析>>

(09年西城區(qū)抽樣理)(14分)

已知的頂點A在射線上, A, B兩點關(guān)于x軸對稱,O為坐標原點,且線段AB上有一點M滿足. 當(dāng)點Al上移動時,記點M的軌跡為W.

    (Ⅰ) 求軌跡W的方程;

    (Ⅱ)設(shè)P(-1,0),Q(2,0),求證:.

查看答案和解析>>

已知△AOB的頂點A在射線上l1:y=x(x>0),A、B兩點關(guān)于x軸對稱,O為坐標原點,且線段AB上有一點M滿足=3,當(dāng)點A在l1上移動時,記點M的軌跡為W。
(1)求軌跡W的方程;
(2)設(shè)N(2,0),是否存在過N的直線與W相交于P,Q兩點,使得=1?若存在,求出直線l;若不存在,說明理由。

查看答案和解析>>

已知圓C:x2+y2=4,點D(4,0),坐標原點為O.圓C上任意一點A在X軸上的影射為點B已知向量=t+(1-t)(t∈R,t≠0)
(1)求動點Q的軌跡E的方程
(2)當(dāng)t=時,設(shè)動點Q關(guān)于X軸的對稱點為點P,直線PD交軌跡E于點R (異于P點),試問:直線QR與X軸的交點是否為定點,若是定點,求出其坐標;若不是定點,請說明理由.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

          ∴PO⊥AC,

          又∵面PAC⊥面ABC,PO面PAC,

          ∴PO⊥面ABC,……………………2分

          連結(jié)OD,則OD//BC,

          ∴DO⊥AC,

          由三垂線定理知AC⊥PD.……………………4分

          (2)連接OB,過E作EF⊥OB于F,

          又∵面POB⊥面ABC,

          ∴EF⊥面ABC,

          過F作FG⊥AC,連接EG,

          由三垂線定理知EG⊥AC,

          ∴∠EGF即為二面角E―AC―B的平面角…………6分

          ……………………9分

          (3)由題意知

          .…………………………12分

          20.(本小題滿分12分)

          解:(1)設(shè)“生產(chǎn)一臺儀器合格”為事件A,則

          ……………………2分

          (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

          所以的分布列為:

          3

          2

          1

          0

          P

           

          的數(shù)學(xué)期望

          …………9分

          (3)該廠每生產(chǎn)一件儀器合格率為

          ∴每臺期望盈利為(萬元)

          ∴該廠每月期望盈利額為萬元……………………12分

          21.(本小題滿分12分)

          解:(1)設(shè)

          ,

          ,

          …………………………3分

          ,這就是軌跡E的方程.……………………4分

          (2)當(dāng)時,軌跡為橢圓,方程為①…………5分

          設(shè)直線PD的方程為

          代入①,并整理,得

             ②

          由題意,必有,故方程②有兩上不等實根.

          設(shè)點

          由②知,………………7分

          直線QF的方程為

          當(dāng)時,令,

          代入

          整理得,

          再將代入,

          計算,得x=1,即直線QF過定點(1,0)

          當(dāng)k=0時,(1,0)點……………………12分

          22.(本小題滿分14分)

          解:(1)

          由題知,即a-1=0,∴a=1.……………………………2分

          x≥0,∴≥0,≥0,

          又∵>0,∴x≥0時,≥0,

          上是增函數(shù).……………………4分

          (Ⅱ)由(Ⅰ)知

          下面用數(shù)學(xué)歸納法證明>0.

          ①當(dāng)n=1時,=1>0成立;

          ②假設(shè)當(dāng)時,>0,

          上是增函數(shù),

          >0成立,

          綜上當(dāng)時,>0.……………………………………6分

          >0,1+>1,∴>0,

          >0,∴,…………………………………8分

          =1,∴≤1,綜上,0<≤1.……………………………9分

          (3)∵0<≤1,

          ,

          ,

          ,

          >0,………………………………………11分

          =??……

            =n.……………………………12分

          ∴Sn++…+

          +()2+…+()n

          ==1.

          ∴Sn<1.………………………………………………………………14分

           

           

           


          同步練習(xí)冊答案