題目列表(包括答案和解析)
數(shù)列的通項(xiàng)公式
(1)求:f(1)、f(2)、f(3)、f(4)的值;
(2)由上述結(jié)果推測(cè)出計(jì)算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.
設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。 (1)若,求b3; (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。
設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。
(1)若,求b3;
(2)若,求數(shù)列的前2m項(xiàng)和公式;
(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。
設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。 (1)若,求b3; (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
A
B
A
C
D
二、填空題13.; 14.; 15.; 16..
三、解答題
17.(1)
兩兩相互垂直, 連結(jié)并延長(zhǎng)交于F.
同理可得
------------ (6分)
(2)是的重心, F是SB的中點(diǎn)
梯形的高
--- (12分)
【注】可以用空間向量的方法
18.解:
(1)設(shè)通過(guò)3次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來(lái)的事件為A
1分
P(A)= 5分
所以通過(guò)3次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來(lái)的概率為…6分
(2)設(shè)最多通過(guò)4次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來(lái)的事件為B … 7分
P(B)= 11分
所以最多通過(guò)4次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來(lái)的概率為… 12分
19.(1).
又.
.………6分
(2)
又,
.從而
當(dāng)且同向時(shí),.………12分
20.解:(1) ,
令,由得或...
當(dāng)時(shí),,當(dāng)時(shí),,所以處取極小值,即 …………4分
(2)
處取得極小值,即由即
由四邊形ABCD是梯形及BC與AD不平行,得.有即
由四邊形ABCD的面積為1,得即得,從而得 ……12分
21.(1)設(shè)雙曲線(xiàn)C2的方程為= 1,則a2 = 4 ? 1 = 3,再由a2 + b2 = c2得b2 = 1.故C2的方程為= 1. (5分)
(2)將y = kx +代入得(1 + 4k2)x2 + 8kx + 4 = 0,由直線(xiàn)l與橢圓C1恒有兩個(gè)不同的交點(diǎn)得(8)2k2 ? 16 (1 + 4k2) = 16(4k2 ? 1)>0,即k2>.①(7分)
將y = kx + 代入得(1 ? 3k2)x2 ? 6kx ? 9 = 0.由直線(xiàn)l與雙曲線(xiàn)C2恒有兩個(gè)不同的交點(diǎn)A、B得.即k≠且k2<1.②(9分)
設(shè)A (xA,yA),B (xB,yB),則xA + xB = ,xA,xB = ,由得xA xB + yA yB<6,而xA xB + yA yB = xA xB + (kxA + ) (kxb + )= (k2 + 1) xA xB + k (xA + xB) + 2 = (k2 + 1)?,于是<6,即將.解此不等式得或. 、 (11分)
由①、②、③得,
故k的取值范圍為. (12分)
22.(1).
(2),
則,
.
(3),
即 、
又由于,
則,
兩式相減得,
,當(dāng)且時(shí)是增函數(shù),
的最小值是, 、
由①②得: 成立.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com