由已知.f(x)有最大值3.所以lga<0.并且+4lga=3. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
a2x+1
3x-1
(a∈N)
,方程f(x)=-2x+7有兩個根x1,x2,且x1<1<x2<3.
(1)求自然數(shù)a的值及f(x)的解析式;
(2)記等差數(shù)列{an}和等差數(shù)列{bn}的前n項和分別為Sn和Tn,且
Sn
Tn
=f(n),(n∈N*)
,設g(n)=
an
bn
,求g(n)的解析式及g(n)的最大值;
(3)在(2)小題的條件下,若a1=10,寫出數(shù)列{an}和{bn}的通項,并探究在數(shù)列{an}和{bn}中是否存在相等的項?若有,求這些相等項從小到大排列所成數(shù)列{cn}的通項公式;若沒有,請說明理由.

查看答案和解析>>

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)n
+(
1
x2
+x)n
(n是正整數(shù))在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

已知函數(shù)f(x)=x2+3x|x-a|,其中a∈R.
(1)當a=
1
3
時,方程f(x)=b恰有三個根,求實數(shù)b的取值范圍;
(2)當a=
1
3
時,是否存在區(qū)間[m,n],使得函數(shù)的定義域與值域均為[m,n],若存在請求出所有可能的區(qū)間[m,n],若不存在請說明理由;
(3)若a>0,函數(shù)f(x)在區(qū)間(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).

查看答案和解析>>

(2009•金山區(qū)二模)設函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4

當x=-
1
2
時,u有最大值,umax=
1
4
,顯然u沒有最小值,
∴當x=-
1
2
時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設an=
f(n)
2n-1
,請?zhí)岢龃藛栴}的一個結論,例如:求通項an.并給出正確解答.
注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

定義數(shù)列中的前n項的積為數(shù)列的n項階乘,記為,例如:(a3n+1)!!=a4•a7•a10•…•a3n+1,已知f(x)=x-sinx在[0,n]上的最大值為bn;設an=bn+sin n.
(1)求an
(2)求證:
(3)是否存在m∈N*使成立?若存在,求出所有的m的值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案