③捆綁法:在特定要求的條件下.將幾個相關(guān)元素當(dāng)作一個元素來考慮.待整體排好之后再考慮它們“局部 的排列.它主要用于解決“元素相鄰問題 .例如.一般地.n個不同元素排成一列.要求其中某個元素必相鄰的排列有個.其中是一個“整體排列 .而則是“局部排列 . 查看更多

 

題目列表(包括答案和解析)

某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機抽取20件,對其等級系數(shù)進行統(tǒng)計分析,得到頻率分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 b c
(Ⅰ)若所抽取的20件日用品中,等級系數(shù)為4的恰有3件,等級系數(shù)為5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的條件下,將等級系數(shù)為4的3件日用品記為x1,x2,x3,等級系數(shù)為5的2件日用品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2,這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件日用品的等級系數(shù)恰好相等的概率.

查看答案和解析>>

(2009•孝感模擬)一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(1)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.試問當(dāng)n等于多少時,P的值最大?
(2)在(1)的條件下,將5個白球全部取出后,對剩下的n個紅球全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號,求ξ的分布列,期望和方差.

查看答案和解析>>

(2012•三明模擬)某食品廠對生產(chǎn)的某種食品按行業(yè)標(biāo)準(zhǔn)分成五個不同等級,等級系數(shù)X依次為A,B,C,D,E.現(xiàn)從該種食品中隨機抽取20件樣品進行檢驗,對其等級系數(shù)進行統(tǒng)計分析,得到頻率分布表如下:
X A B C D E
頻率 a 0.2 0.45 b c
(Ⅰ)在所抽取的20件樣品中,等級系數(shù)為D的恰有3件,等級系數(shù)為E的恰有2件,求a,b,c的值;
(Ⅱ)在(Ⅰ)的條件下,將等級系數(shù)為D的3件樣品記為x1,x2,x3,等級系數(shù)為E的2件樣品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2這5件樣品中一次性任取兩件(假定每件樣品被取出的可能性相同),試寫出所有可能的結(jié)果,并求取出的兩件樣品是同一等級的概率.

查看答案和解析>>

(本小題滿分12分)

一個口袋中裝有大小相同的個紅球()和個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎。

(Ⅰ)試用表示一次摸獎中獎的概率

(Ⅱ)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為,求的最大值?

(Ⅲ)在(Ⅱ)的條件下,將個白球全部取出后,對剩下的個紅球全部作如下標(biāo)記:記上號的有個(),其余的紅球記上號,現(xiàn)從袋中任取一球。表示所取球的標(biāo)號,求的分布列、期望和方差。

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)化簡的表達(dá)式并求函數(shù)的周期;

(Ⅱ)當(dāng)時,若函數(shù)時取得最大值,求的值;

(Ⅲ)在(Ⅱ)的條件下,將函數(shù)圖象上各點的橫坐標(biāo)擴大到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

 

查看答案和解析>>


同步練習(xí)冊答案