設(shè)點P(x,y),Q(x,y).若Ax+By+C與Ax+By+C同號則P.Q在直線l的同側(cè).異號則在直線l的異側(cè). 查看更多

 

題目列表(包括答案和解析)

設(shè)點P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個動點(其中O為坐標(biāo)原點),點P到定點M(0,)的距離比點P到x軸的距離大

(1)求點P的軌跡方程;

(2)若直線l:y=x+1與點P的軌跡相交于A、B兩點,求線段AB的長;

(3)設(shè)點P的軌跡是曲線C,點Q(1,y0)是曲線C上一點,求過點Q的曲線C的切線方程.

查看答案和解析>>

設(shè)點P(x,y)(y≥0)為平面直角坐標(biāo)系xOy中的一個動點(其中O為坐標(biāo)原點),點P到定點M(0,)的距離比點Px軸的距離大

(1)求點P的軌跡方程;

(2)若直線l∶y=x+1與點P的軌跡相交于A、B兩點,求線段AB的長;

(3)設(shè)點P的軌跡是曲線C,點Q(1,y0)是曲線C上一點,求過點Q的曲線C的切線方程.

查看答案和解析>>

已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側(cè)棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

設(shè)
a
= (
x
2
 , -
y
2
)
,
b
= (
x
2
 , -
y
2
)
,P(x,y)是曲線C上任意一點,且滿足
a
b
=1
.O為坐標(biāo)原點,直線l:x-y-1=0與曲線C交于不同兩點A和B.(1)求
OA
• 
OB
;(2)設(shè)點M(2,0),求MP的中點Q的軌跡方程.

查看答案和解析>>

(2013•蘭州一模)選修4-4:《坐標(biāo)系與參數(shù)方程》
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù))
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>


同步練習(xí)冊答案