(文)已知曲線C:y=lnx-4x與直線x=1交于一點P.那么曲線C在點P處的切線方程是 . 解析:由已知得y′=-4.所以當x=1時有y′=-3.即過點P的切線的斜率k=-3.又y=ln1-4=-4.故切點P.所以點P處的切線方程為y+4=-3(x-1).即3x+y+1=0. 答案:3x+y+1=0 (理)已知函數(shù)f(x)=3x2+2x+1.若∫f(x)dx=2f(a)成立.則a= . 解析:∫(3x2+2x+1)dx=(x3+x2+x)|=4. 所以2(3a2+2a+1)=4.即3a2+2a-1=0. 解得a=-1或a=. 答案:-1或 查看更多

 

題目列表(包括答案和解析)

(理)在直角坐標系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以坐標原點O為極點,x軸的正半軸為極軸,則曲線C的極坐標方程可寫為
 

(文)若D是由
x-2y≥0
x+3y≥0
所確定的區(qū)域,則圓x2+y2=4在D內的弧長為
 

查看答案和解析>>

已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)(文)若直線l:y=x+m與曲線C有兩個公共點,求m的取值范圍;
(理)若直線l:y=kx-1與曲線C有兩個公共點,求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點,求|PQ|的最小值.

查看答案和解析>>

(浙江卷理20文22)已知曲線C是到點P(-)和到直線y=-距離相等的點的軌跡.L是過點Q(-1,0)的直線,MC上(不在l上)的動點; A、Bl上,MAl,MBx軸(如圖).

(Ⅰ)求曲線C的方程;

(Ⅱ)求出直線l的方程,使得為常數(shù)

查看答案和解析>>

(浙江卷理20文22)已知曲線C是到點P(-,)和到直線y=-距離相等的點的軌跡.L是過點Q(-1,0)的直線,MC上(不在l上)的動點; A、Bl上,MAlMBx軸(如圖).

(Ⅰ)求曲線C的方程;

(Ⅱ)求出直線l的方程,使得為常數(shù)

查看答案和解析>>

已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)(文)若直線l:y=x+m與曲線C有兩個公共點,求m的取值范圍;
(理)若直線l:y=kx-1與曲線C有兩個公共點,求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點,求|PQ|的最小值.

查看答案和解析>>


同步練習冊答案