(II) 設(shè)過點(diǎn)的直線 與點(diǎn)的軌跡交于A.B兩點(diǎn). 查看更多

 

題目列表(包括答案和解析)

設(shè)動點(diǎn)M(x,y)到直線y=3的距離與它到點(diǎn)F(0,1)的距離之比為
3
,點(diǎn)M的軌跡為曲線E.
(I)求曲線E的方程:
(II)過點(diǎn)F作直線l與曲線E交于A,B兩點(diǎn),且
AF
FB
.當(dāng)2≤λ≤3時,求直線l斜率k的取值范圍•

查看答案和解析>>

若圓C過點(diǎn)M(0,1)且與直線相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點(diǎn),點(diǎn)

(I)求曲線E的方程;    (II)若t=6,直線AB的斜率為,過A、B兩點(diǎn)的圓N與拋物線在點(diǎn)A處共同的切線,求圓N的方程;

(III)分別過A、B作曲線E的切線,兩條切線交于點(diǎn)Q,若點(diǎn)Q恰好在直線上,求證:t與均為定值。

查看答案和解析>>

已知,點(diǎn)滿足,記點(diǎn)的軌跡為.

(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點(diǎn)且與軌跡交于、兩點(diǎn). (i)設(shè)點(diǎn),問:是否存在實(shí)數(shù),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動,都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.(ii)過、作直線的垂線、,垂足分別為、,記

,求的取值范圍.

查看答案和解析>>

已知點(diǎn)

   (I)當(dāng)點(diǎn)P在x軸上移動時,求動點(diǎn)M的軌跡方程;

   (II)設(shè)動點(diǎn)M的軌跡為C,如果過定點(diǎn)的直線與曲線C相交不同的兩點(diǎn)S、R,求證:曲線C在S、R兩點(diǎn)處的切線的交點(diǎn)在一條定直線上。

查看答案和解析>>

已知,點(diǎn)滿足,記點(diǎn)的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點(diǎn)且與軌跡交于、兩點(diǎn). (i)設(shè)點(diǎn),問:是否存在實(shí)數(shù),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動,都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.(ii)過作直線的垂線、,垂足分別為、,記
,求的取值范圍.

查看答案和解析>>

一. 選擇題(本大題共8小題,每小題5分,共40分)

題號

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

A

B

A

D

D

B

C

C


二. 填空題(本大題共6小題,每小題5分.有兩空的小題,第一空3分,第二空2分,共30分)

(9)        (10)      (11)   (12)   (13) ,

  (14)  10, 

三.解答題 (本大題共6小題,共80分)

(15)     (共12分)

解:(I),,

= ?

                        ------------------2分

                                     ------------------4分

= .                                           ------------------5分

                      -----------------6分

函數(shù)的最大值為.                                   ------------------7分

當(dāng)且僅當(dāng)Z)時,函數(shù)取得最大值為.

(II)由Z),                 ------------------9分

                                ------------------11分

函數(shù)的單調(diào)遞增區(qū)間為[](Z.       ------------------12分  

                                                       

(16) (共14分)

解法一:

解:(Ⅰ)平面.--------------------2分                 

在平面內(nèi)的射影.                           --------------------3分                                            

, ∴.                               --------------------4分

(Ⅱ) 由(Ⅰ),又,

為所求二面角的平面角.                          --------------------6分

又∵==4,

=4 .  ∵=2 , ∴=60°.                   --------------------9分

即二面角大小為60°.

(Ⅲ)過于D,連結(jié),            

由(Ⅱ)得平面平面,又平面,

∴平面平面,且平面平面,

平面.

在平面內(nèi)的射影.

. -----------------11分

中,

中,.

=.                                    -------------------13分                       

所以直線與平面所成角的大小為.            -------------------14分               

解法二:

解:(Ⅰ)由已知,

點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.                             

,.                    -------------------2分  

,.

.     

.                        -------------------4分

(Ⅱ)平面.

是平面的法向量. -------------------5分

設(shè)側(cè)面的法向量為,

,.

,

      .令.

則得平面的一個法向量.                            -------------------7分

.                              -------------------8分

即二面角大小為60°.                                    -------------------9分

(Ⅲ)由(II)可知是平面的一個法向量.               -------------------10分

, .   -------------------13分                   

所以直線與平面所成角為.                         -------------------14分

(17)(共13分)

解:(I)設(shè)乙闖關(guān)成功的概率為,丙闖關(guān)成功的概率為          -------------------1分

因?yàn)橐冶?dú)立闖關(guān),根據(jù)獨(dú)立事件同時發(fā)生的概率公式得:

                                                   -------------------3分

解得.                                             -------------------5分

答:乙闖關(guān)成功的概率為,丙闖關(guān)成功的概率為.

(II)團(tuán)體總分為4分,即甲、乙、丙三人中恰有2人過關(guān),而另外一人沒過關(guān). 

設(shè)“團(tuán)體總分為4分”為事件A,                                 -------------------6分

 則        -------------------9分

  答:團(tuán)體總分為4分的概率為.

(III)團(tuán)體總分不小于4分, 即團(tuán)體總分為4分或6分,

 設(shè)“團(tuán)體總分不小于4分”為事件B,                              -------------------10分                     

 由(II)知團(tuán)體總分為4分的概率為,

 團(tuán)體總分為6分, 即3人都闖關(guān)成功的概率為            ------------------- 12分

 所以參加復(fù)賽的概率為=                         -------------------13分

 答:該小組參加復(fù)賽的概率為.

(18) (共13分)

解:(Ⅰ)第5行第5個數(shù)是29.                                            ……………2分

 (II) 由.                             ……………3分

設(shè)是數(shù)列的前項(xiàng)和, ∴.                            

  當(dāng)時,                                               ……………5分 

  當(dāng)時,                       ……………6分

  又當(dāng)時,,

                                             ……………8分

  即數(shù)列的通項(xiàng)公式是              

   (III)由 (II)知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列.                 ……………  9分                                    

∵前行共有項(xiàng)          

 ∴第行的第一項(xiàng)為            ………… 11分

∴第行構(gòu)成首項(xiàng)為,公差為2的等差數(shù)列,且有項(xiàng).    

.                           ……………13分

 

(19)(共14分)

解:(I)設(shè)點(diǎn), 由已知得點(diǎn)的中垂線上,                    -------------------1分

,                                                     ------------------2分

根據(jù)拋物線的定義知,動點(diǎn)在以F為焦點(diǎn),以直線m為準(zhǔn)線的拋物線上,    ------------------4分

∴點(diǎn)

同步練習(xí)冊答案