(Ⅱ) 求點(diǎn)到平面的距離, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知對于任意實(shí)數(shù)k,直線(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒過定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+
3

(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點(diǎn),試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn)到橢圓E的兩個焦點(diǎn)距離之和為2
3
,橢圓E的離心率為
6
3

(1)求橢圓E的方程;
(2)若b為橢圓E的半短軸長,記C(0,b),直線l經(jīng)過點(diǎn)C且斜率為2,與直線l平行的直線AB過點(diǎn)(1,0)且交橢圓于A、B兩點(diǎn),求△ABC的面積S的值.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cos
y=2sin?-2
(?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,C2的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,(余弦展開為+號,改題還是答案?)
(1)求曲線C1的極坐標(biāo)方程及C2的直角坐標(biāo)方程;
(2)點(diǎn)P為C1上任意一點(diǎn),求P到C2距離的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),

若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

(I)求證:;

(II)在軸正半軸上是否存在一定點(diǎn),使得過點(diǎn)P的任意一條拋物線的弦的長度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

(I)求證:

(II)在軸正半軸上是否存在一定點(diǎn),使得過點(diǎn)P的任意一條拋物線的弦的長度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案