(3)求xn. 查看更多

 

題目列表(包括答案和解析)

求證
.
x
=
x1+x2+…+xn
n
,P=(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2
,q=(x1-a)2+(x2-a)2+…+(xn-a)2a≠
.
x
則一定有( 。
A、P>qB、P<q
C、P、q的大小不定D、以上都不對

查看答案和解析>>

求和:Sn=(x+
1
x
2+(x2+
1
x2
2+…+(xn+
1
xn
2

查看答案和解析>>

求和:(x+
1
y
)+(x2+
1
y2
)+…(xn+
1
yn
)
(y≠0)

查看答案和解析>>

{xn}是首項為1,公比為
1
2
的等比數列,
opi
=(xi,
1
xi
),(i=1,2,…,n),
op
=
n
i=1
opi,
om
=(0,t)
,若
op
om
,求實數t的取值范圍.

查看答案和解析>>

求數列1,3x,5x2,…,(2n-1)xn-1前n項的和.

查看答案和解析>>

 

難點磁場

解:(1)設f(x)=a(x6ec8aac122bd4f6e)26ec8aac122bd4f6e,由f(1)=0得a=1.

f(x)=x2-(t+2)x+t+1.

(2)將f(x)=(x-1)[x-(t+1)]代入已知得:

(x-1)[x-(t+1)]g(x)+anx+bn=xn+1,上式對任意的xR都成立,取x=1和x=t+1分別代入上式得:

6ec8aac122bd4f6et≠0,解得an=6ec8aac122bd4f6e[(t+1)n+1-1],bn=6ec8aac122bd4f6e[1-(t+16ec8aac122bd4f6en)

(3)由于圓的方程為(xan)2+(ybn)2=rn2,又由(2)知an+bn=1,故圓Cn的圓心On在直線x+y=1上,又圓Cn與圓Cn+1相切,故有rn+rn+1=6ec8aac122bd4f6ean+1an|=6ec8aac122bd4f6e(t+1)n+1?

6ec8aac122bd4f6e設{rn}的公比為q,則

6ec8aac122bd4f6e                                                                        ②÷①得q=6ec8aac122bd4f6e=t+1,代入①得rn=6ec8aac122bd4f6e

Sn=π(r12+r22+…+rn2)=6ec8aac122bd4f6e[(t+1)2n-1]

殲滅難點訓練

一、1.解析:當a=ny=n(n+1)x2-(2n+1)x+1

由|x1x2|=6ec8aac122bd4f6e,得dn=6ec8aac122bd4f6e,∴d1+d2+…+dn

6ec8aac122bd4f6e

答案:A

二、2.解析:由1,x1,x2,4依次成等差數列得:2x1=x2+1,x1+x2=5解得x1=2,x2=3.又由1,y1,y2,8依次成等比數列,得y12=y2,y1y2=8,解得y1=2,y2=4,

P1(2,2),P2(3,4).∴6ec8aac122bd4f6e=(3,4)

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:1

3.解析:第一次容器中有純酒精aba(1-6ec8aac122bd4f6e)升,第二次有純酒精a(1-6ec8aac122bd4f6e)-6ec8aac122bd4f6e,即a(1-6ec8aac122bd4f6e)2升,故第n次有純酒精a(1-6ec8aac122bd4f6e)n升.

答案:a(1-6ec8aac122bd4f6e)n

4.解析:從2001年到2005年每年的國內生產總值構成以95933為首項,以7.3%為公比的等比數列,∴a5=95933(1+7.3%)4≈120000(億元).

答案:120000

三、

5.解:(1)由題意得rqn1+rqnrqn+1.由題設r>0,q>0,故從上式可得:q2q-1<0,解得6ec8aac122bd4f6eq6ec8aac122bd4f6e,因q>0,故0<q6ec8aac122bd4f6e;

(2)∵6ec8aac122bd4f6e.b1=1+r≠0,所以{bn}是首項為1+r,公比為q的等比數列,從而bn=(1+r)qn-1.

q=1時,Sn=n(1+r),

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e,從上式可知,當n-20.2>0,即n≥21(nN*)時,Cnn的增大而減小,故

1<CnC21=1+6ec8aac122bd4f6e=2.25                                                                  ①

n-20.2<0,即n≤20(nN*)時,Cn也隨n的增大而減小,故1>Cn≥C20=1+6ec8aac122bd4f6e=-4                                                                                       ②

綜合①②兩式知,對任意的自然數nC20CnC21,故{Cn}的最大項C21=2.25,最小項C20=-4.

6.解:(1)第1位職工的獎金a1=6ec8aac122bd4f6e,第2位職工的獎金a2=6ec8aac122bd4f6e(1-6ec8aac122bd4f6e)b,第3位職工的獎金a3=6ec8aac122bd4f6e(1-6ec8aac122bd4f6e)2b,…,第k位職工的獎金ak=6ec8aac122bd4f6e (1-6ec8aac122bd4f6e)k1b;

(2)akak+1=6ec8aac122bd4f6e(1-6ec8aac122bd4f6e)k1b>0,此獎金分配方案體現了“按勞分配”或“不吃大鍋飯”的原則.

(3)設fk(b)表示獎金發(fā)給第k位職工后所剩余數,則f1(b)=(1-6ec8aac122bd4f6e)b,f2(b)=(1-6ec8aac122bd4f6e)2b,…,fk(b)=(1-6ec8aac122bd4f6e)kb.得Pn(b)=fn(b)=(1-6ec8aac122bd4f6e)nb,

6ec8aac122bd4f6e.

7.解:設an表示第n年的廢舊物資回收量,Sn表示前n年廢舊物資回收總量,則數列{an}是以10為首項,1+20%為公比的等比數列.

(1)a6=10(1+20%)5=10×1.25=24.8832≈25(萬噸)

(2)S6=6ec8aac122bd4f6e=99.2992≈99.3(萬噸)

∴從1996年到2000年共節(jié)約開采礦石20×99.3≈1986(萬噸)

(3)由于從1996年到2001年共減少工業(yè)廢棄垃圾4×99.3=397.2(萬噸),

∴從1996年到2001年共節(jié)約:

6ec8aac122bd4f6e≈3 平方公里.

8.解:(1)當n≥3時,xn=6ec8aac122bd4f6e;

6ec8aac122bd4f6e

由此推測an=(-6ec8aac122bd4f6e)n-1a(nN)

證法一:因為a1=a>0,且

6ec8aac122bd4f6e (n≥2)

所以an=(-6ec8aac122bd4f6e)n-1a.

證法二:用數學歸納法證明:

(?)當n=1時,a1=x2x1=a=(-6ec8aac122bd4f6e)0a,公式成立;

(?)假設當n=k時,公式成立,即ak=(-6ec8aac122bd4f6e)k1a成立.

那么當n=k+1時,

ak+1=xk+2xk+1=6ec8aac122bd4f6e

6ec8aac122bd4f6e

據(?)(?)可知,對任意nN,公式an=(-6ec8aac122bd4f6e)n-1a成立.

(3)當n≥3時,有xn=(xnxn1)+(xn1xn2)+…+(x2x1)+x1

=an1+an2+…+a1,

由(2)知{an}是公比為-6ec8aac122bd4f6e的等比數列,所以6ec8aac122bd4f6ea.


同步練習冊答案