(2)解:如圖所示. 由..則面.所以.四棱錐的體積為. -3 -6 -10 -12 查看更多

 

題目列表(包括答案和解析)

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過(guò)作圓柱的截面交下底面于.

(1)求證:;

(2)若四邊形ABCD是正方形,求證;

(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。

【解析】第一問(wèn)中,利用由圓柱的性質(zhì)知:AD平行平面BCFE

又過(guò)作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛

第二問(wèn)中,由線面垂直得到線線垂直。四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

第三問(wèn)中,設(shè)正方形ABCD的邊長(zhǎng)為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE

又過(guò)作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛 

(2) 四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

 

查看答案和解析>>


同步練習(xí)冊(cè)答案