變式:函數的圖象與它的反函數圖象所圍成的面積是 查看更多

 

題目列表(包括答案和解析)

如圖,已知二次函數f(x)=ax2+bx+c,直線l1:x=2,直線l2:y=3tx(其中-1<t<1,t為常數);若直線l2與函數f(x)的圖象以及直線l1,l2與函數f(x)以及的圖象所圍成的封閉圖形如陰影所示.
(I)求y=f(x);
(2)求陰影面積s關于t的函數y=s(t)的解析式.

查看答案和解析>>

已知二次函數f(x)=ax2+bx+c,滿足f(0)=f(1)=0,且f(x)的最小值是-
1
4

(1)求f(x)的解析式;
(2)設直線l:y=t2-t(其中0<t<
1
2
,t為常數),若直線l與f(x)的圖象以及y軸所圍成封閉圖形的面積是S1(t),直線l與f(x)的圖象所圍成封閉圖形的面積是S2(t),設g(t)=S1(t)+
1
2
S2(t)
,當g(t)取最小值時,求t的值.
(3)已知m≥0,n≥0,求證:
1
2
(m+n)2+
1
4
(m+n)≥m
n
+n
m

查看答案和解析>>

如圖,已知二次函數f(x)=ax2+bx+c,直線l1:x=2,直線l2:y=3tx(其中-1<t<1,t為數);.若直線l2與函數f(x)的圖象以及直線l1,l2與函數f(x)的圖象所圍成的封閉圖形如陰影所示.
(1)求y=f(x);  
(2)求陰影面積s關于t的函數y=s(t)的解析式;(3)若過點A(1,m),m≠4可作曲線y=s(t),t∈R的三條切線,求實數m的取值范圍.

查看答案和解析>>

已知二次函數f(x)=ax2+bx+c,直線l1:x=2,l2:y=-t2+8t(其中0≤t≤2.t為常數);若直線l1、l2與函數f(x)的圖象以及l(fā)1,y軸與函數f(x)的圖象所圍成的封閉圖形如陰影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求陰影面積S關于t的函數S(t)的解析式;
(Ⅲ)若g(x)=6lnx+m,問是否存在實數m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

精英家教網已知二次函數f(x)=ax2+bx+c,直線l1:y=-t2+8t(其中0≤t≤2.t為常數);l2:x=2.若直線l1、l2與函數f(x)的圖象以及l(fā)1,y軸與函數f(x)的圖象所圍成的封閉圖形如陰影所示.
(1)求a、b、c的值.
(2)求陰影面積S關于t的函數S(t)的解析式.

查看答案和解析>>


同步練習冊答案