16.設(shè).函數(shù)的定義域為.值域為.且定義“區(qū)間的長度等于 .如果區(qū)間長度的最小值為.那么實數(shù)a的值為 . 查看更多

 

題目列表(包括答案和解析)

設(shè),函數(shù)的定義域為,且

,對定義域內(nèi)任意的,滿足,求:

(1)的值;

(2)函數(shù)的單調(diào)遞增區(qū)間;

(3)時,,求,并猜測時,的表達(dá)式.

查看答案和解析>>

設(shè),函數(shù)的定義域為,且,對定義域內(nèi)任意的,滿足,求:

(1)的值;

(2)函數(shù)的單調(diào)遞增區(qū)間;

查看答案和解析>>

 設(shè),函數(shù)的定義域為,且,對定義域內(nèi)任意的,滿足

(1)試用表示,并在時求出的值;    

(2)試用表示,并求出的值;

(3)時,,求,并猜測時,的表達(dá)式.

 

 

 

 

 

查看答案和解析>>

設(shè),函數(shù)的定義域為,當(dāng)時有

(1)求;

 

(2)求的值;

(3)求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

設(shè),函數(shù)的定義域為,當(dāng)時有

   (1)求;

   (2)求的值;

(3)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12:BC.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.1或; 14.-4; 15.1; 16.6.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)∵,

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時。ⅲ剑ⅲ??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當(dāng)且僅當(dāng)時。ⅲ剑ⅲ

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)設(shè)袋中有黑球n個,則每次取出的一個球是黑球的概率為,       3分

設(shè)“連續(xù)取兩次,都是黑球”為事件A,∴,????????????????????????????? 5分

,∴.????????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)由(Ⅰ)知,每次取出一個球,取到紅球的概率是.????????????????????????????? 7分

設(shè)“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

;??????????????????????????????????????????????????????????????????????????????? 8分

.????????????????????????????????????????????????????????????????????????????????????? 10分

∴取到紅球恰為2次或3次的概率為

故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.???????????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點,連接BO,則BO⊥AA1.???????????????????????????????????????????????????????????????????????????????????????????????? 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點,建立如圖空間直角坐標(biāo)系,則,,.則,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

設(shè)是平面ABC的一個法向量,

,則.設(shè)A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.∴.?????????????????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ)證明:時,;????????????????????????????????????????????????? 1分

時,,所以,????????????????????????????????????????? 2分

即數(shù)列是以2為首項,公差為2 的等差數(shù)列.????????????????????????????????????????????? 3分

,,?????????????????????????????????????????????????????????????????????? 4分

當(dāng)時,,當(dāng)時,.?????????????????????????????? 5分

????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)當(dāng)時,,結(jié)論成立.??????????????????????????????????????????????? 7分

當(dāng)時,????????????????????? 8分

????????????????????????????????????????????????????????????????????????? 10分

.?????????????????????????????????????????????????????????????????????????????????????? 11分

綜上所述:.?????????????????????????????????????????????????????? 12分

 

21.解:(Ⅰ)∵,∴.比較系數(shù)得,,.???????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 1分

,,?????????????????????????????????????????????????????????????????????? 2分

(Ⅱ)由(Ⅰ)知,

,令,得

x

1

2

+

0

-

0

+

0

-

∴函數(shù)有極大值,,極小值.?????????????????? 4分

∵函數(shù)在區(qū)間上存在極值,

???????????????????????????????????????????? 5分

解得

故實數(shù).??????????????????????????????????????????????????????????????????? 6分

(Ⅲ)函數(shù)的圖象與坐標(biāo)軸無交點,有如下兩種情況:

(?)當(dāng)函數(shù)的圖象與x軸無交點時,必須有:

???????????????????????????????????????? 7分

,函數(shù)的值域為,

解得.??????????????????????????????????????????????????????????????????????? 8分

(?)當(dāng)函數(shù)的圖象與y軸無交點時,必須有:

有意義,???????? 9分

解得.????????????????????????????????????????? 10分

由(?)、(?)知,p的范圍是,

故實數(shù)p的取值范圍是.???????????????????????????????????????????????????????????????????????? 12分

22.解:(Ⅰ)設(shè),,,

,,

.??????????????????????????????????????????????????????????????????????????????? 2分

,∴,∴,∴.??????????????????????????? 4分

則N(c,0),M(0,c),所以,

,則. ???????????????????????????????????????????????????????????????? 5分

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 7分

消去y得

∵直線l與橢圓交于兩個不同點,設(shè)

,

,,?????????????????????????????????????????????????????????????? 8分

,???????????????????????????????????????????????????????????????? 9分

,.????????????????????????????????????????????????????????????????????????? 10分

.???????????????????????????????????????? 11分

(或).

設(shè),則,

∴S關(guān)于u在區(qū)間單調(diào)遞增,又,,?????????????????????????????? 13分

.??????????????????????????????????????????????????????????????????????????????????????????????????? 14分

 

 

 


同步練習(xí)冊答案