題目列表(包括答案和解析)
(本小題12分)設(shè)函數(shù).
(1)求函數(shù)的最大值和最小正周期;
設(shè)A,B,C為的三個(gè)內(nèi)角,若且C為銳角,求.(意大利餡餅問(wèn)題)山姆的意大利餡餅屋中設(shè)有一個(gè)投鏢靶 該靶為正方形板.邊長(zhǎng)為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機(jī)會(huì)贏得一種意大利餡餅中的一個(gè),投鏢靶中畫有三個(gè)同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時(shí).可得到一個(gè)大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時(shí),可得到一個(gè)中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時(shí),可得到一個(gè)小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個(gè)顧客都能投鏢中靶,并假設(shè)每個(gè)圓的周邊線沒有寬度,即每個(gè)投鏢不會(huì)擊中線上,試求一顧客將嬴得:
(a)一張大餡餅,
(b)一張中餡餅,
(c)一張小餡餅,
(d)沒得到餡餅的概率
(本小題滿分12分)
有一塊邊長(zhǎng)為6m的正方形鋼板,將其四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,然后焊接成一個(gè)無(wú)蓋的蓄水池。
(Ⅰ)寫出以x為自變量的容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;
(Ⅱ)指出函數(shù)V(x)的單調(diào)區(qū)間;
(Ⅲ)蓄水池的底邊為多少時(shí),蓄水池的容積最大?最大容積是多少?
(本小題滿分12分) 已知向量,,.
(1)若求向量與的夾角;
(2)當(dāng)時(shí),求函數(shù)的最大值。
一、選擇題(每小題5分,共40分)
1.D 2.B 3.B 4.B 5.C 6.D 7.C 8.A
解:5.C ,相切時(shí)的斜率為
6.D
7.C
8.A 原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設(shè)函數(shù)f(x)=x2009+x,
顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,
即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0
二、填空題(每小題5分,共30分)
9.
10. 位執(zhí)“一般”對(duì)應(yīng)位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.
11.-192
12.;根據(jù)題中的信息,可以把左邊的式子歸納為從個(gè)球(n個(gè)白球,k個(gè)黑球中取出m個(gè)球,可分為:沒有黑球,一個(gè)黑球,……,k個(gè)黑球等類,故有種取法.
13.5; 14、;
15.16; 由可化為xy =8+x+y, x,y均為正實(shí)數(shù)
xy =8+x+y
(當(dāng)且僅當(dāng)x=y等號(hào)成立)即xy-2-8可解得,
即xy16故xy的最小值為16.
三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟)。
16、(本題滿分12分)
解:Ⅰ)在中, 且
cosA=,又A是的內(nèi)角,∴A= …………6分
(Ⅱ)由正弦定理,又,故 …………8分
即: 故是以為直角的直角三角形 …………10分
又∵A=, ∴B= …………12分
17.(本題滿分14分)
解:(I)所求x的可能取值為6、7、8、9 …………1分
…………7分
(II)
∴線路通過(guò)信息量的數(shù)學(xué)期望
EX ……13分
答:(I)線路信息暢通的概率是. (II)線路通過(guò)信息量的數(shù)學(xué)期望是.……14分
18.(本題滿分14分)
解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系, ……1分
|