解:(1)設(shè)PF1=m,PF2=n,則m+n=2a,cos∠F1PF2===-1,而mn≤=a2.cos∠F1PF2≥-1.等號(hào)成立當(dāng)且僅當(dāng)m=n=a,即:P時(shí).∠F1PF2最大.此時(shí)cos∠F1PF2=-1(2)設(shè)短軸的一個(gè)頂點(diǎn)為B, ∠F1BF2≥900.∠F1BO≥450. 查看更多

 

題目列表(包括答案和解析)

設(shè)點(diǎn)A,B的坐標(biāo)分別為(-a,0),(a,0).直線AM,BM相交于點(diǎn)M,且他們的斜率之積為k.則下列說(shuō)法正確的是
(2)(3)
(2)(3)

(1)當(dāng)k=
b2
a2
時(shí),點(diǎn)M的軌跡是雙曲線.(其中a,b∈R+
(2)當(dāng)k=-
b2
a2
時(shí),點(diǎn)M的軌跡是部分橢圓.(其中a,b∈R+
(3)在(1)條件下,點(diǎn)p(x0,y0)(x0<0)是曲線上的點(diǎn)F1(-
a2+b2
,0)
,F(xiàn)2
a2+b2
,0),且|PF1|=
1
4
|PF2|,則(1)的軌跡所在的圓錐曲線的離心率取值范圍(1,
5
3
]
(4)在(2)的條件下,過(guò)點(diǎn)F1(-
a2-b2
,0),F(xiàn)2
a2-b2
,0).滿足
.
MF1
.
MF2
=0的點(diǎn)M總在曲線的內(nèi)部,則(2)的軌跡所在的圓錐曲線的離心率的取值范圍是(
2
2
,1)

查看答案和解析>>

設(shè)橢圓
x2
3
+
y2
4
=1
的焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),且|PF1|=3|PF2|,則|PF1|的值為( 。
A、3
B、1
C、
3
3
2
D、
3
2

查看答案和解析>>

設(shè)P為雙曲線x2-
y2
12
=1
上的一點(diǎn),F(xiàn)1,F(xiàn)2是該雙曲線的兩個(gè)焦點(diǎn),若|PF1|=
3
2
|PF2|
,則cos∠F1PF2
-
13
4
-
13
4

查看答案和解析>>

設(shè)F1、F2,分別是橢圓
x2
25
-
y2
9
=1
的左、右焦點(diǎn),點(diǎn)P在橢圓上,若|PF1|=9|PF2|,則P點(diǎn)的坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

設(shè)F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使|OP|=|OF1|(O為原點(diǎn)),且|PF1|=
3
|PF2|
,則雙曲線的離心率為( 。
A、
3
-1
2
B、
3
-1
C、
3
+1
2
D、
3
+1

查看答案和解析>>


同步練習(xí)冊(cè)答案