21.已知直線AB平行于軸.且直線上不同兩點(diǎn)A.B的坐標(biāo)分別為(1.).B(2m. ).求線段AB的長. 查看更多

 

題目列表(包括答案和解析)

已知直線AB平行于x軸,且直線上不同兩點(diǎn)AB的坐標(biāo)為A(3,7-2m),B(2m,m-2),則線段AB的長為________.

查看答案和解析>>

已知,如圖,直角坐標(biāo)系中的等腰梯形ABCD,AB∥CD,下底AB在x軸上,D在y軸上,M為AD的中點(diǎn),精英家教網(wǎng)過O作腰BC的垂線交BC于點(diǎn)E.
(1)求證:OM⊥OE;
(2)若等腰梯形中AD所在的直線的解析式為y=
4
3
x+4
,且
DC
AB
=
1
4
,求過等腰梯形ABCD的三個(gè)頂點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)若點(diǎn)M在梯形ABCD內(nèi)沿水平方向移動(dòng)到N,且使四邊形MNCD為平行四邊形,拋物線上是否存在一點(diǎn)P,使S△PAB與四邊形MNCD的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)若點(diǎn)M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點(diǎn)M的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出直線l的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知一拋物線經(jīng)過O(0,0),B(1,1)兩點(diǎn),且解析式的二次項(xiàng)系數(shù)為-數(shù)學(xué)公式(a>0).
(Ⅰ)當(dāng)a=1時(shí),求該拋物線的解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo);
(Ⅱ)已知點(diǎn)A(0,1),若拋物線與射線AB相交于點(diǎn)M,與x軸相交于點(diǎn)N(異于原點(diǎn)),當(dāng)a在什么范圍內(nèi)取值時(shí),ON+BM的值為常數(shù)?當(dāng)a在什么范圍內(nèi)取值時(shí),ON-BM的值為常數(shù)?
(Ⅲ)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn).將這條拋物線進(jìn)行平移,使其只有一個(gè)不動(dòng)點(diǎn),此時(shí)拋物線的頂點(diǎn)是否在直線y=x-數(shù)學(xué)公式上,請(qǐng)說明理由.

查看答案和解析>>

已知:如圖,把等腰△ABO放在直角坐標(biāo)系中,AB=AO,點(diǎn)A的坐標(biāo)是(-2,3),過△ABO的重心Q作x軸的平行線l,把△ABO沿直線l翻折,使得點(diǎn)A'落在第三象限.
(1)試直接寫出點(diǎn)A′的坐標(biāo);
(2)若雙曲線數(shù)學(xué)公式過點(diǎn)A′,且它的另一分支與直線l相交于點(diǎn)C,試判斷:直線A′C是否經(jīng)過原點(diǎn)O?
(3)問:y軸上是否存在點(diǎn)P,使得△A′CP是直角三角形?若存在,試求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案