0  440369  440377  440383  440387  440393  440395  440399  440405  440407  440413  440419  440423  440425  440429  440435  440437  440443  440447  440449  440453  440455  440459  440461  440463  440464  440465  440467  440468  440469  440471  440473  440477  440479  440483  440485  440489  440495  440497  440503  440507  440509  440513  440519  440525  440527  440533  440537  440539  440545  440549  440555  440563  447090 

10. 解:(1)∵點在反比例函數圖象上,

,

即反比例函數關系式為;

∵點在反比例函數圖象上,

∵點在一次函數的圖象上,

解得,

∴一次函數關系式為.

(2)當時,一次函數值為2,

,

.

試題詳情

9. 乙題:

解:(1)因為反比例函數的圖象經過點

,················································································································ 2分

.····················································································································· 3分

所以反比例函數的解析式為,············································································· 4分

(2)當為一、三象限角平分線與反比例函數圖像的交點時,

線段最短.············································································································ 5分

代入,解得,即,.····················· 6分

,··········································································································· 7分

,··········································································································· 8分

為反比例函數圖像上的任意兩點,

由圖象特點知,線段無最大值,即.·················································· 9分

試題詳情

8.解:(1)∵反比例函數的圖像經過點A(1,3),

       ∴,即m=-3.

       ∴反比例函數得表達式為.             ……3分

       ∵一次函數y=kx+b的圖像經過A(1,-3)、C(0,-4),

       ∴  解得

       ∴一次函數的表達式為y=x-4               ……3分

(2)由消去y,得x2-4x+3=0.

   即(x-1)(x-3)=0.

   ∴x=1或x=3.

   可得y=-3或y=-1.

于是

而點A的坐標是(1,-3),

∴點B的坐標為(3,-1)!                    ……2分

試題詳情

7. 解:(1)設藥物燃燒階段函數解析式為,由題意得:

························································································································ 2分

此階段函數解析式為······································································· 3分

(2)設藥物燃燒結束后的函數解析式為,由題意得:

·························································································································· 5分

此階段函數解析式為······································································ 6分

(3)當時,得···················································································· 7分

························································································································· 8分

·························································································································· 9分

從消毒開始經過50分鐘后學生才可回教室.···························································· 10分

試題詳情

6. 解 (Ⅰ)∵點P(2,2)在反比例函數的圖象上,

.即. ···································································································· 2分

∴反比例函數的解析式為

∴當時,. ···························································································· 4分

(Ⅱ)∵當時,;當時,,  ····················································· 6分

又反比例函數值隨值的增大而減小, ············································· 7分

∴當時,的取值范圍為.································································ 8分

試題詳情

5. (1)證明:分別過點C、D作

垂足為G、H,則

(2)①證明:連結MF,NE

設點M的坐標為,點N的坐標為,

∵點M,N在反比例函數的圖象上,

由(1)中的結論可知:MN∥EF。

②MN∥EF。

試題詳情

4. 解:(1)由題意可知,

解,得 m=3.     ………………………………3分

A(3,4),B(6,2);

k=4×3=12.   ……………………………4分

(2)存在兩種情況,如圖: 

①當M點在x軸的正半軸上,N點在y軸的正半軸

上時,設M1點坐標為(x1,0),N1點坐標為(0,y1).

∵ 四邊形AN1M1B為平行四邊形,

∴ 線段N1M1可看作由線段AB向左平移3個單位,

再向下平移2個單位得到的(也可看作向下平移2個單位,再向左平移3個單位得到的).

由(1)知A點坐標為(3,4),B點坐標為(6,2),

N1點坐標為(0,4-2),即N1(0,2);    ………………………………5分

M1點坐標為(6-3,0),即M1(3,0).    ………………………………6分

設直線M1N1的函數表達式為,把x=3,y=0代入,解得

∴ 直線M1N1的函數表達式為. ……………………………………8分

②當M點在x軸的負半軸上,N點在y軸的負半軸上時,設M2點坐標為(x2,0),N2點坐標為(0,y2). 

ABN1M1,ABM2N2,ABN1M1,ABM2N2,

N1M1M2N2N1M1M2N2.  

∴ 線段M2N2與線段N1M1關于原點O成中心對稱.   

M2點坐標為(-3,0),N2點坐標為(0,-2).   ………………………9分

設直線M2N2的函數表達式為,把x=-3,y=0代入,解得,

∴ 直線M2N2的函數表達式為.   

所以,直線MN的函數表達式為.  ………………11分

(3)選做題:(9,2),(4,5).  ………………………………………………2分

試題詳情

3. 解:(1) ………(每個點坐標寫對各得2分)………………………4分

(2) ∵    ∴…1分

  ∴ …………………1分

      ∴ …………………2分

 (3)  ①

∴相應B點的坐標是 …………………………………………1分

∴. ………………………………………………………………1分

、  能  ……………………………………………………………………1分

   當時,相應,點的坐標分別是,

經經驗:它們都在的圖象上

 …………………………………………………………………1分

試題詳情

2. 解:(1)(-4,-2);(-m,-)

(2) ①由于雙曲線是關于原點成中心對稱的,所以OP=OQ,OA=OB,所以四邊形APBQ一定是平行四邊形

②可能是矩形,mn=k即可

不可能是正方形,因為Op不能與OA垂直。

解:(1)作BE⊥OA,

∴ΔAOB是等邊三角形

∴BE=OB·sin60o=

∴B(,2)

∵A(0,4),設AB的解析式為,所以,解得,的以直線AB的解析式為

(2)由旋轉知,AP=AD, ∠PAD=60o,

∴ΔAPD是等邊三角形,PD=PA=

試題詳情

1. 證明:(1)分別過點CD,作CGAB,DHAB,

垂足為GH,則∠CGA=∠DHB=90°.……1分

CGDH.  

∵ △ABC與△ABD的面積相等, 

CGDH.   …………………………2分

∴ 四邊形CGHD為平行四邊形. 

ABCD.  ……………………………3分

(2)①證明:連結MF,NE.  …………………4分

設點M的坐標為(x1,y1),點N的坐標為(x2,y2).

∵ 點MN在反比例函數(k>0)的圖象上,

. 

MEy軸,NFx軸, 

OEy1,OFx2

SEFM,   ………………5分

SEFN.   ………………6分

SEFM SEFN       ……

由(1)中的結論可知:MNEF.  ………8分

MNEF.      …………………10分

(若學生使用其他方法,只要解法正確,皆給分.

試題詳情


同步練習冊答案